项目名称 MediaDSP3200/6400 IP Core

MediaDSP32/64 ISA Manual (Draft)

编 写 人: 浙江大学信息学院 SoC 研发小组

编写时间: 2007年5月

审核人:刘鹏

审核时间: 2007年5月

MediaDS	P32/64 ISA Manual (Draft)	0
MediaD	SP32/64 ISA Manual	2
	引言	
	MediaDSP32/64 指令格式	
	2.2 4.4.2 2.2 2.4 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7	

MediaDSP32/64 ISA Manual

11100, 200,

主要内容

☑ 引言

☑ MediaDSP32/MediaDSP64 指令格式

一、引言

1. 编写目的:

提供给 MediaDSP3200 和 MediaDSP6400 IP core 系列设计人员和软件人员参考,作为设计文档。

2. 读者对象:

MediaDSP3200 和 MediaDSP6400 处理器设计人员和软件程序员。

3. 文档背景:

MediaDSP3200 和 MediaDSP6400 处理器 ISA 设计。

4. 参考文献:

- [1]超大规模集成电路 SOC 重大专向预启动项目技术报告(863-SOC-Y-3-2), 浙江大学信息与通信工程研究所, 2001 年 8 月。
- [2]超大规模集成电路设计专项技术报告(863-2002AA1Z1140),浙江大学信息与通信工程研究所,2003年4月。
- [3] John L. Hennessy and David A. Patterson. *Computer Architecture: A Quantitative Approach*, 3rd Edition, Morgan Kaufmann Publishing Co., Menlo Park, CA, **2002**.
- [4] John Paul Shen, and Mikko H.Lipasti, *Modern Processor Design: Fundamentals of Superscalar Processors*, Beta Edition, McGraw-Hill Companies, Inc, 2003.
- [5] TMS320C4x User's Guide, Texas Instruments, 1996.
- [6] http://www.mips.com/
- [7] http://www.analog.com/
- [8] http://www.ti.com/

二、MediaDSP32/64 指令格式

MediaDSP32/64(简称 MD32/64)的指令类型可分为 MDF, MDD, MDS, EMS 四种。MDF 格式有 3 类 IF-type(立即数指令),RF-type(寄存器指令),JF-type(跳转指令);MDD 格式有 ID-type(立即数指令),RD-type(寄存器指令),PD-type(并行指令)3 类;MDS 格式有移位指令,运算类指令,数据传输和关于存储器的运算类指令 4 类;EMS 格式有移位指令,运算类指令,数据传输和关于存储器的运算类指令 4 类。MediaDSP ISA II 包括 200 条指令,MediaDSP ISA I 包括 159 条指令。

MDF 指令列表(60条指令)

表 2.1 MD-32/64 ISA MDF 指令一览表

MDF 指令	表 2.1 MD-32/04 ISA MDF 指令一见衣 指令描述		
	Load/store 指令(12)		
LB	装入字节		
LBU	装入不带符号字节		
LH	装入半字		
LHU	装入不带符号半字		
LW	装入字		
LWL	左边装入字		
LWR	右边装入字		
SB	存入字节		
SH	存入半字		
SW	存入字		
SWL	左边存入字		
SWR	右边存入字		
	运算指令(立即数)(8)		
ADDI	加立即数		
ADDIU	加立即数(不带符号)		
SLTI	小于立即数时置数		
SLTIU	小于不带符号立即数时置数		
ANDI	立即数"与"		
ORI	立即数"或"		
XORI	立即数"异或"		
LUI	装入上部立即数		
	运算指令(3操作数)(10)		
ADD	加法		
ADDU	加法(不带符号)		
SUB	减法		
SUBU	减法(不带符号)		
SLT	小于时置数		
SLTU	小于(不带符号)时置数		
AND	"与"		
OR	"或"		

DSP32/64 ISA Manual	1.0 断红人学信息与电于工程学系 SoC R&D 小组		
XOR	"异或"		
NOR	"或非"		
乘指令(6)			
MULT	乘法		
MULTU	无符号乘法		
MFHI	从媒体寄存器高位传送到通用寄存器		
MTHI	从通用寄存器传送到媒体寄存器高位		
MFLO	从媒体寄存器低位传送到通用寄存器		
MTLO	从通用寄存器传送到媒体寄存器低位		
	跳转和转移指令(12)		
J	跳转		
JAL	跳转与连接		
JR	跳转到寄存器		
JALR	跳转到连接寄存器		
BEQ	相等时转移		
BNE	不相等时转移		
BLEZ	大于或等于零时转移		
BGTZ	大于零时转移		
BLTZ	小于零时转移		
BGEZ	大于或等于零时转移		
BLTZAL	小于零或连接时转移		
BGEZAL	大于或等于零且连接时转移		
	移位指令(6)		
SLL	逻辑左移		
SRL	逻辑右移		
SRA	算术运算右移		
SLLV	逻辑变量左移		
SRLV	逻辑变量右移		
SRAV	算术变量右移		
	系统控制指令(6)		
MTC0	传送到 CP0		
MFC0	从 CP0 传送		
TLBWI	写变址 TLB 入口		
TLBR	读变址 TLB 入口		
SYSCALL	系统调用		
RFE	异常返回		

MDD 指令列表(58条指令)

表 2.2 MD-ISA MDD 指令一览表

表 2.2 MD-ISA MDD 指令一览表 MDD 指令 指令描述			
MIDD 1日で			
ID	Load/store 指令(12)		
LB	装入字节 #) 不# 你只要 #		
LBU	装入不带符号字节		
LH	装入半字		
LHU	装入不带符号半字		
LW	装入字		
LWL	左边装入字		
LWR	右边装入字		
SB	春入字节		
SH	存入半字		
SW	存入字		
SWL	左边存入字		
SWR	右边存入字		
	运算指令(立即数)(8)		
ADDI	加立即数		
ADDIU	加立即数(不带符号)		
SLTI	小于立即数时置数		
SLTIU	小于不带符号立即数时置数		
ANDI	立即数"与"		
ORI	立即数"或"		
XORI	立即数"异或"		
LUI	装入上部立即数		
	运算指令(3操作数)(10)		
ADD	加法		
ADDU	加法(不带符号)		
SUB	减法		
SUBU	减法(不带符号)		
SLT	小于时置数		
SLTU	小于(不带符号)时置数		
AND	"与"		
OR	"或"		
XOR	"异或"		
NOR	"或非"		
乘指令(2)			
MULT	乘法		
MULTU	无符号乘法		
	循环指令(2条)		
RPTS	单条指令循环		
RPTB	程序块循环		
	移位指令(6)		
SLL	逻辑左移		
OLL	NOTICE DE LA CONTRACTION DEL CONTRACTION DE LA C		

SRL	逻辑右移	
SRA	算术运算右移	
SLLV	逻辑变量左移	
SRLV	逻辑变量右移	
SRAV	算术变量右移	
	运算和存储类并行指令(10)	
ADD_SW	整数加和存整数	
SUB_SW	整数减和存整数	
AND_SW	整数与和存整数	
SRA_SW	整数代数右移和存整数	
SRL_SW	整数逻辑右移和存整数	
SLL_SW	整数逻辑左移和存整数	
OR_SW	整数或和存整数	
XOR_SW	整数异或和存整数	
ABS_SW	整数绝对值和存整数	
MULT_SW	整数乘和存整数	
	存取类并行指令(3)	
LW_SW	取整数和存整数	
SW_SW	存整数和存整数	
LW_LW	取整数和取整数	
乘加类并行指令(3)		
MULT_ADD	整数乘和整数加	
MULT_SUB	整数乘和整数减	
MAC	乘累加	

MDS 指令列表(43 条指令)

操作数位宽为 64bit.

表 2.3 MD-ISA MDS 指令一览表

MediaDSP ISA	指令功能描述	
MDS 指令	1月~2016年2月	
MIDS 1H 4	数据传输指令(6)	
PMTHI, PMTLO	传输 4-字节 (Rs 到 MRd) 从通用寄存器到 MDS 寄存器高/低端	
PMFHI, PMFLO	传输 4-字节 (<i>MRd</i> 到 <i>Rs</i>) 从 MDS 寄存器高/低端到通用寄存器	
PLOADO	传输 8-字节 (mem 到 MRd) 从 memory 到 MDS 寄存器	
PSTOREO	传输 8-字节 (<i>MRd</i> 到 <i>mem</i>) 从 MDS 寄存器到 memory	
TSTOREO	转换指令(2)	
PACKSSDB/QD	将MRt (mem) 和MRs操作数中打包的2-字节/4-字节数据转换为1-字节	
TACK55DB/QD	/2-字节数据,使用有符号饱和处理溢出	
PACKUSDB/QD	将 <i>MRt</i> (<i>mem</i>) 和 <i>MRs</i> 操作数中打包的 2-字节数据转换为 1-字节数据,	
PACKUSDD/QD	使用无符号饱和处理溢出	
DUNDCKIIDD/DO/OO	解包指令(2)	
PUNPCKHBD/DQ/QO	将 MRt (mem) 和 MRs 操作数中打包的 1-字节/2-字节/4-字节相交织,	
DID IDOUI DD/DO/OO	取高 64-bit 存入 MRd 操作数	
PUNPCKLBD/DQ/QO	将 MRt (mem) 和 MRs 操作数中打包的 1-字节/2-字节/4-字节相交织,	
	取低 64-bit 存入 MRd 操作数	
D. D. D. D. J. C.	算术指令(17)	
PADDB/D/Q	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节/4-字节数据执行	
DA DE GEAR	SIMD 加法,不作溢出处理	
PADDSB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 加	
	法,使用有符号饱和处理溢出	
PADDUSB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 加	
	法,使用无符号饱和处理溢出	
PSUBB/D/Q	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节/4-字节数据执行	
	SIMD 减法,不作溢出处理	
PSUBSB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 减	
	法,使用有符号饱和处理溢出	
PSUBUSB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 减	
	法,使用无符号饱和处理溢出	
PMULLSD	MRs和MRt(mem)操作数中打包的2-字节数据执行SIMD有符号乘法,	
	每个乘法结果取低16-bit。PMACLSD将每次乘法结果不断累加。	
PMULHSD	MRs和MRt (mem)操作数中打包的2-字节数据执行SIMD有符号乘法,	
	每个乘法结果取高16-bit。PMACHSD将每次乘法结果不断累加。	
PMULLUD	MRs和MRt (mem)操作数中打包的2-字节数据执行SIMD无符号乘法,	
	每个乘法结果取低16-bit。PMACLUD将每次乘法结果不断累加。	
PMULHUD	MRs和MRt (mem) 操作数中打包的2-字节数据执行SIMD无符号乘法,	
	每个乘法结果取高16-bit。PMACHUD将每次乘法结果不断累加。	
PMADDQD	MRs 和 MRt (mem) 操作数中打包的 2-字节数据执行 SIMD 有符号乘	
	法,相邻2个结果两两相加	

MediaDSP ISA	指令功能描述	
MDS 指令		
PAVGB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 平	
	均值计算,小数四舍五入	
PMAXUB MRs 和 MRt (mem) 操作数中打包的 1-字节无符号数打		
	结果取较大的数	
PMAXSD	MRs 和 MRt (mem) 操作数中打包的 2-字节有符号数执行 SIMD 比较,	
	结果取较大的数	
PMINUB	MRs 和 MRt (mem) 操作数中打包的 1-字节无符号数执行 SIMD 比较,	
	结果取较小的数	
PMINSD	MRs 和 MRt (mem) 操作数中打包的 2-字节有符号数执行 SIMD 比较,	
	结果取较小的数	
PSADBD	MRs 和 MRt (mem) 中打包的 1-字节无符号数执行 SIMD 减法,减法	
	结果取绝对值,最后8个绝对差值相加	
	比较指令(2)	
PCMPEQB/D/Q	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节/4-字节数据执行	
	SIMD 比较,若相等则结果为全 1,否则为全 0	
PCMPGTB/D/Q	MRs 和 MRt(mem)中打包的 1-字节/2-字节/4-字节有符号数执行 SIMD	
•	比较,若大于则结果为全1,否则为全0	
	逻辑指令(4)	
PAND	MRs 和 MRt (mem) 按位逻辑与	
POR	MRs 和 MRt (mem) 按位逻辑或	
PXOR	MRs 和 MRt (mem) 按位逻辑异或	
PNOR	MRs 和 MRt (mem) 按位逻辑或非	
111011	移位指令(3)	
PSLLD/Q/O	MRs 中打包的 2 字节/4 字节数据进行 SIMD 逻辑左移,移位量来自	
T DEED! Q! O	MRt (imm) 的最低 5bit	
PSRLD/Q/O	MRs 中打包的 2 字节/4 字节数据进行 SIMD 逻辑右移,移位量来自	
TORLERQIO	MRt (imm) 的最低 5bit	
PSRAD/Q	MRs 中打包的 2 字节数据进行 SIMD 算术右移,移位量来自 MRt(imm)	
I SKAD/Q	的最低 5bit	
CETDITC	比特流操作指令(2)	
GETBITS	从码流中取出n个比特,并且码流指针也相应的偏移n个比特	
SHOWBITS	从码流中取出n个比特,但是码流的指针并不改变	

EMS 指令列表(41 条指令,支持 MediaDSP6400, MediaDSP3200 不支持)

操作数位宽为 128bit.

表 2.4 MD ISA EMS 指令一览表

MediaDSP ISA	表 2.4 MD ISA EMS 指令一览表 指令功能描述		
EMS 指令	1日之 为 配油 处		
EMP 11			
EPLOADO			
EPLOADOL	传输 16-子节 (mem 到 MRd) 数据左对齐写入到 MDS 寄存器		
EPLOADOR	传输 16-字节(mem 到 MRd)数据右对齐写入到 MDS 寄存器		
EPSTOREO	传输 16-字节 (<i>MRd</i> 到 <i>mem</i>) 从 MDS 寄存器到 memory		
EFSTOREO	转换指令(2)		
を			
El ACKSSDD/QD	/4-字节数据,使用有符号饱和处理溢出		
EPACKUSDB/QD	将 <i>MRt</i> (<i>mem</i>) 和 <i>MRs</i> 操作数中打包的 4-字节数据转换为 2-字节数据,		
EIMEROSDBIQB	使用无符号饱和处理溢出		
	解包指令(2)		
EPUNPCKHBD/DQ/QO	将 <i>MRt</i> (<i>mem</i>) 和 <i>MRs</i> 操作数中打包的 1-字节/2-字节/4-字节相交织,		
Er ord eranbb/b q/qo	取高 128-bit 存入 <i>MRd</i> 操作数		
EPUNPCKLBD/DQ/QO	将 <i>MRt</i> (<i>mem</i>) 和 <i>MRs</i> 操作数中打包的 1-字节/2-字节/4-字节相交织,		
El ol il chebbib qi qo	取低 128-bit 存入 <i>MRd</i> 操作数		
	算术指令(21)		
EPADDB/D/Q	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节/4-字节数据执行		
2112227272	SIMD 加法,不作溢出处理		
EPADDSB/D	MRs 和 MRt (mem) 操作数中打包的-1 字节/2-字节数据执行 SIMD 加		
	法,使用有符号饱和处理溢出		
EPADDUSB/D MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数			
	法,使用无符号饱和处理溢出		
EPSUBB/D/Q	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节/4-字节数据执行		
	SIMD 减法,不作溢出处理		
EPSUBSB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 减		
	法,使用有符号饱和处理溢出		
EPSUBUSB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 减		
	法,使用无符号饱和处理溢出		
EPMULLSD	MRs和MRt (mem)操作数中打包的2-字节数据执行SIMD有符号乘法,		
	每个乘法结果取低16-bit		
EPMULHSD	MRs和MRt (mem)操作数中打包的2-字节数据执行SIMD有符号乘法,		
	每个乘法结果取高16-bit。		
EPMACHSD MRs和MRt (mem) 操作数中打包的2-字节数据执行SIMD			
	每个乘法结果取高16-bit,将每次乘法结果不断累加		
EPMACLSD MRs和MRt (mem) 操作数中打包的2-字节数据执行SIM			
	每个乘法结果取低16-bit,将每次乘法结果不断累加		
EPMULLUD	MRs和MRt (mem) 操作数中打包的2-字节数据执行SIMD无符号乘法,		
	每个乘法结果取低16-bit		
EPMULHUD	MRs和MRt (mem) 操作数中打包的2-字节数据执行SIMD无符号乘法,		
	每个乘法结果取高16-bit		

lediaDSP32/64 ISA Manual I	.U	
MediaDSP ISA	指令功能描述	
EMS 指令		
PMACLUD	MRs和MRt (mem) 操作数中打包的2-字节数据执行SIMD无符号乘法,	
	每个乘法结果取低16-bit, PMACLUD将每次乘法结果不断累加	
PMACHUD MRs和MRt (mem) 操作数中打包的2-字节数据执行SIMD无		
	每个乘法结果取高16-bit, PMACHUD将每次乘法结果不断累加	
EPMADDQD	MRs 和 MRt (mem) 操作数中打包的 2-字节数据执行 SIMD 有符号乘	
	法,相邻2个结果两两相加	
EPAVGB/D	MRs 和 MRt (mem) 操作数中打包的 1-字节/2-字节数据执行 SIMD 平	
	均值计算,小数四舍五入	
EPMAXUB	MRs 和 MRt (mem) 操作数中打包的 1-字节无符号数执行 SIMD 比较,	
	结果取较大的数	
EPMAXSD	MRs 和 MRt (mem) 操作数中打包的 2-字节有符号数执行 SIMD 比较,	
	结果取较大的数	
EPMINUB	MRs 和 MRt (mem) 操作数中打包的 1-字节无符号数执行 SIMD 比较,	
	结果取较小的数	
EPMINSD	MRs 和 MRt (mem) 操作数中打包的 2-字节有符号数执行 SIMD 比较,	
	结果取较小的数	
EPSADBD	MRs 和 MRt (mem) 中打包的 1-字节无符号数执行 SIMD 减法,减法	
LI SI IDDD	结果取绝对值,最后16个绝对差值相加	
	比较指令(2)	
LL+X3目マ(2)		
LI CIVII EQDIDIQ	SIMD 比较,若相等则结果为全 1,否则为全 0。	
EPCMPGTB/D/Q	MRs 和 MRt(mem)中打包的 1-字节/2-字节/4-字节有符号数执行 SIMD	
MKS 和 MKK MEM 用有电码 1-子 $1/2$ -子 $1/4$ -子 $1/4$ -子 $1/4$ 有有专数执行 比较,若大于则结果为全 1,否则为全 0。		
	逻辑指令(4)	
EPAND	MRs 和 MRt (mem) 按位逻辑与	
	MRs 和 MRt (mem) 按位逻辑或	
EPVOR		
EPXOR	MRs 和 MRt (mem) 按位逻辑异或	
EPNOR	MRs 和 MRt (mem) 按位逻辑或非	
	移位指令(6)	
EPSLLD/Q	MRs 中打包的 2 字节/4 字节数据进行 SIMD 逻辑左移,移位量来自	
	MRt (imm) 的最低 5bit	
EPSRLD/Q	MRs 中打包的 2 字节/4 字节数据进行 SIMD 逻辑右移,移位量来自	
	MRt (imm) 的最低 5bit	
EPSRAD/Q MRs 中打包的 2 字节数据进行 SIMD 算术右移,移位量来		
	的最低 5bit	
EPSHUFQ	MRs 中打包的 4 字节数据作换位排列	
	MRs 中低 128 位做打包的 2 字节数据作换位排列,换位控制来自	
EPSHUFLD	141K3 版 120 医版 11 医 11 2 1 及	
EPSHUFLD	Sa/MRt 的最低 8bit。MRd 中低 128 位每个 16bit 数据取自 MRs 中低	
EPSHUFLD		
EPSHUFLD EPSHUFHD	Sa/MRt 的最低 8bit。MRd 中低 128 位每个 16bit 数据取自 MRs 中低	
	Sa/MRt 的最低 8bit。MRd 中低 128 位每个 16bit 数据取自 MRs 中低 128 位 4 个 16bit 数据的其中一个.	

文档常用符号说明

文档中用到的符号简述如下:

符号	意义	
Src1	源寄存器 1	
Src2	源寄存器 2	
Src3	源寄存器 3	
Src4	源寄存器 4	
Dst	目的寄存器(3bit)	
Dst1	目的寄存器 1 (3bit)	
Dst2	目的寄存器 2(3bit)	
D1	目的寄存器 1(1bit)	
D2	目的寄存器 2(1bit)	
rs	源寄存器(5bit)	
rt	目标寄存器(5bit)	
rd	目的寄存器(5bit)	
Sa	移位立即数或移位寄存器(5bit)	
GPR	取出处理器通用寄存器的值	
Mod(ARn)	指出 ARn 的寻址模式	
Modn(ARn)	按照指令中的 Mod 位指出的模式取出 memory 中的值	
Mem()	取出 memory 中的值	
Byte()	对字中的字节进行操作	
Sign()	符号扩展	
Zero()	无符号扩展,零扩展	
G	普通寻址标志位	
T	三宗量寻址标志位	
Е	扩展寻址标志位	
P	并行指令寻址标志位	
A	并行指令选择标志位	
ARn	辅助寄存器 n (0~7)	
IRn	索引寄存器 n (0 或 1)	
Op1 op2	操作1和操作2并行执行	
X and y	X与y按位逻辑与	
X or y	X 与 y 按位逻辑或	
X xor y	X 与 y 按位逻辑异或	
X * y	X与y按位相乘	
~ X	X按位逻辑反	
x	X取绝对值	
X << y	X 左移 ybit	
X >> y	X 右移 ybit	
*++SP	SP 递增,递增后的值作为地址	
*SP	SP 作为地址,然后 SP 递减	

说明:

- 对于指令表中某些新增指令还有待于进一步讨论,所以在本文档中并未给出说明。
- 文档中列出的指令说明是按照指令表中的顺序给出的,可以对照查阅。
- ▶ 文档中主要对 MDD 指令编码作了说明。

GRF 寄存器为 32x32bit.

GNF 可 行 奋分 32x32011.		,
寄存器名称	寄存器序列	说明
R0	0	0 寄存器(硬连线为零)
R1	1	
R2	2	
R3	3	
R4	4	
R5	5	
R6	6	
R7	7	
R8	8	辅助寄存器 m/n
R9	9	辅助寄存器 m/n
R10	10	辅助寄存器 m/n
R11	11	辅助寄存器 m/n
R12	12	辅助寄存器 m/n
R13	13	辅助寄存器 m/n
R14	14	辅助寄存器 m/n
R15	15	辅助寄存器 m/n
R16	16	
R17	17	
R18	18	
R19	19	
R20	20	
R21	21	
R22	22	
R23	23	
R24	24	索引寄存器 0(IR0)
R25	25	索引寄存器 1(IR1)
R26	26	
R27	27	
R28	28	
R29	29	
R30	30	
R31	31	

MRF 寄存器为 8x64bit. (MediaDSP3200 支持)

寄存器名称	寄存器序列	说明
MR0	0	可用做 MUL 的 HI, LO 寄存器
MR1	1	
MR2	2	
MR3	3	
MR4	4	
MR5	5	
MR6	6	
MR7	7	

ERF 寄存器为 8x128bit.(MediaDSP6400 支持)

寄存器名称	寄存器序列	说明
ER0	0	
ER1	1	
ER2	2	
ER3	3	
ER4	4	
ER5	5	
ER6	6	
ER7	7	

(a) 带偏移量的间接寻址

Mod field	Syntax	Operation	Description
10000	*+ARn(disp)	addr=ARn + disp	前加
10001	*-ARn(disp)	addr=ARn - disp	前减
10010	* A D - (-1;)	addr=ARn + disp	
10010	*++ARn(disp)	ARn=ARn +disp	前加且更新辅助寄存器
10011	* ABn(dian)	addr=ARn - disp	前减且更新辅助寄存器
10011	*ARn(disp)	ARn=ARn -disp	削減且史別補助可任命
10100	*ARn++(disp)	addr=ARn	后加只更新辅助寄存器
10100	'AKn++(disp)	ARn=ARn +disp	加州八史州福助司行船
10101	*ARn(disp)	addr=ARn	后减只更新辅助寄存器
10101	'AKII(uisp)	ARn=ARn -disp	加城八丈州 相助司 行船
10110	* A D n + + (dign) 0/	addr=ARn	 后加且以窗口寻址更新辅助寄存器
10110	*ARn++(disp)%	ARn=circ(ARn +disp)	加州且以図口寸型文別補助司行命
10111	*APn (dian)9/	addr=ARn	后减且以窗口寻址更新辅助寄存器
10111	*ARn(disp)%	ARn=circ(ARn +disp)	/// // // // // // // // // // // // /

(b) 用索引寄存器 IR0 的间接寻址

Mod field	Syntax	Operation	Description
00000	*+ARn(IR0)	addr=ARn + IR0	前加
00001	*-ARn(IR0)	addr=ARn - IR0	前减
00010	* A D m (ID (1)	addr=ARn + IR0	前加且更新辅助寄存器
00010	*++ARn(IR0)	ARn=ARn +IR0	削加且更刺補助司任命
00011	*ARn(IR0)	addr=ARn - IR0	前减且更新辅助寄存器
00011	AKII(IKU)	ARn=ARn -IR0	削 <u>域</u> 且更刺補助可付益
00100	*ARn++(IR0)	addr=ARn	 后加只更新辅助寄存器
00100	AKII++(IKU)	ARn=ARn +IR0	加州八丈州州切可任命
00101	*ARn(IR0)	addr=ARn	 后减只更新辅助寄存器
00101	AKII(IKO)	ARn=ARn -IR0	加吸入艾州相切可仔值
00110	*ARn++(IR0)%	addr=ARn	 后加且以窗口寻址更新辅助寄存器
00110	AKII+ (IKO)/0	ARn=circ(ARn +IR0)	7/ / / / / / / / / / / / / / / / / / /
00111	*ARn(IR0)%	addr=ARn	后减且以窗口寻址更新辅助寄存器
00111	AKII(IKU)/0	ARn=circ(ARn +IR0)	/山峽亞公園日寸型文別相切刊行館

(c) 用索引寄存器 IR1 的间接寻址

Mod field	Syntax	Operation	Description		
01000	*+ARn(IR1)	addr=ARn + IR1	前加		
01001	*-ARn(IR1)	addr=ARn - IR1	前减		
01010	*++ARn(IR1)	addr=ARn + IR1	前加且更新辅助寄存器		
01010	·++AKII(IKI)	ARn=ARn +IR1	的加旦史別冊功司行船		
01011	*ARn(IR1)	addr=ARn - IR1	前减且更新辅助寄存器		
01011	AKII(IKI)	ARn=ARn -IR1	削吸且更利相 切可竹爺		
01100	*ARn++(IR1)	addr=ARn	 后加只更新辅助寄存器		
01100	AKII+ (IKI)	ARn=ARn +IR1	加州八文 別補助司行額		
01101	*ARn(IR1)	addr=ARn	 后减只更新辅助寄存器		
01101	AKII(IKI)	ARn=ARn -IR1	山贼八丈 께 抽功司 仔 稲		
01110	*ARn++(IR1)%	addr=ARn	 后加且以窗口寻址更新辅助寄存器		
01110	7 HCH + (HC1)/0	ARn=circ(ARn +IR1)	加加亞公園 D N 型文列相切可行船		
01111	*ARn(IR1)%	addr=ARn	 后減且以窗口寻址更新辅助寄存器		
VIIII	7 11(11(11(1)/0	ARn=circ(ARn +IR1)	// / / / / / / / / / / / / / / / / /		

(d) indirect addressing (special cases)

Mod field	Syntax	Operation	Description
11000	*ARn	addr=ARn	间接寻址
11001	*ARn++(IR0)!	addr=ARn	后加且比特反转
11001	AKII (IKU):	ARn=!(ARn + IR0)	加州

(e) MDS/EMS 指令 Modm 位寻址模式

MODM	地址计算 / 辅助	MODM	地址计算 / 辅助
(5BIT)	地址寄存器自修改	(5BIT)	地址寄存器自修改
00000	*+ARm (disp X 8)	01000	*+ARm (IR0)
00000	'TAKIII (uisp A 6)	10000	*+ARm (IR1)
00001	*-ARm (disp X 8)	01001	*-ARm (IR0)
00001	-AKIII (disp X 8)	10001	*-ARm (IR1)
00010	*++ARm (disp X 8)	01010	*++ARm (IR0)
00010	· · · · AKIII (uisp X 6)	10010	*++ARm (IR1)
00011	*ARm (disp X 8)	01011	*ARm (IR0)
00011	AKIII (uisp X 8)	10011	*ARm (IR1)
00100	*ARm++ (disp X 8)	01100	*ARm++ (IR0)
00100	AKIII (uisp X 6)	10100	*ARm++ (IR1)
00101	*ADm (dian V 0)	01101	*ARm (IR0)
00101	*ARm (disp X 8)	10101	*ARm (IR1)
00110	*ARm++ (dispX8) %	01110	*ARm++ (IR0) %
00110	AKIII (UISPA6) /6	10110	*ARm++ (IR1) %
00111	*ARm (disp X 8) %	01111	*ARm (IR0) %
00111	AKIII (ulsp A 8) 70	10111	*ARm (IR1) %
11001	*ARm++ (IR0X8) B	11000	*ARm

备注:

Addr = 内存地址

ARn = 辅助寄存器 AR0 ~ AR7

IRn = 索引寄存器 IR0 or IR1

Disp = 偏移量

++ = 加且更新

-- = 减且更新

! = 比特反转寻址

circ()% = 窗口寻址

MediaDSP 处理器指令格式

• IF-type 指令格式:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Op	rs	rt	Imm

• ID-type 指令格式:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
Load/store	11111	rt	Modm ARm	Disp
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
ID-type	11111	00 Dst	Im	m
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
ID-type	11111	01 Dst	Modm ARm	Disp

• RF-type 指令格式:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Op	rs	rt	rd	Sa	Func

• RD-type 指令格式:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11 10 9	8 7 6	5 4 3 2 1 0
000000	01	ARm	rt	rd	Disp	SRA,SLL,SRL
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11 10 9	8 7 6	5 4 3 2 1 0
000000	10	Direct1	rt	Direct2		SRA,SLL,SRL
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11 10 9	8 7 6	5 4 3 2 1 0
000000	11	ARm	rt	Modm	Disp	SRA,SLL,SRL

MediaDSP32/64 I	SA Ma	anual 1.0			湗	江大学信	息与电子	工程学	丝系 SoC	R&D 小组
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp	2 1	RI)-type
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
000000	E=00	ARm		rt	T=01	Dst	Modi	n 1	RD	-type
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
000000	E=01	ARm	j	imm	T=01	Dst	Disp	1	RD	-type
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
000000	23 24	rs	E=00		T=10	Dst	Modi	-		-type
00000				111411		550	111041	. 1		type
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
000000		rs	E=01	ARm	T=10	Dst	Disp	1	RD	-type
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
000000	Modn	ARm	Modm	ARn	11	Dst	Modi	n 1	RD	-type
• JF-type 指令	格式:									
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
Op		Index								
- DD tyme (F	曾和才	算和存储类并行)指令格式:								
31 30 29 28 27 26					15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
Op	B1B2		Modm		Modn			lodn	ARm	ARn
		2.01				2501			124111	12141
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5 4 3	2 1 0
Op	A	Src1	P	Src2		Modm		Iodn	ARm	ARn

Op	B1B2B3	指令
	000	ADD_SW
	001	SUB_SW
	010	AND_SW
110011	011	OR_SW
110011	100	XOR_SW
	101	MULT_SW
	110	保留
	111	保留
	000	ABS_SW
	001	SRA_SW
	010	SRL_SW
111011	011	SLL_SW
111011	100	LW_SW
	101	SW_SW
	110	LW_LW
	111	保留
	<u>.</u>	
0	Α	比众

Op	A	指令
	00	MULT_ADD
010011	01	MULT_SUB
010011	10	保留
	11	保留

MDS 指令格式:

MDS-type1:目标操作数为 MRd,第一源操作数为 MRs,第二源操作数为立即数 sa

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	func_code

MDS-type2: 目标操作数为 MRd, 第一源操作数为 MRs, 第二源操作数为立即数 MRt

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	111	111			0	1]	MR	S	0	0	ľ	MR	t	g	g	N	ИR	d		0	000	00			fu	ınc_	_co	de	

MDS-type3: 用于 MDS 寄存器 MRd 和通用寄存器 Rs 之间的数据传输

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	10	MRs	Rs	gg	MRd	00000	func_code

MDS-type4: 目标操作数为 MRd,第一源操作数为 MRs,第二源操作数来自 memory

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	func_code

• EMS 指令格式:

Modm

 $func_code$

11

111100

EMS-type1: 目标	操作数	数为 MRc	l,第-	一源操作	数为N	/IRs,第	二源操作数为立	江即数 sa			
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0			
111100	00	MRs	sa	[9:5]	gg	MRd	sa[4:0]	func_code			
EMS-type2: 目标操作数为 MRd, 第一源操作数为 MRs, 第二源操作数为立即数 MRt											
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0			
111100	01	MRs	00	MRt	gg	MRd	00000	func_code			
EMS-type3: 用于	MDS	寄存器]	MRd 利	D通用寄	存器 R	s 之间的	数据传输				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0			
111100	10	MRs		Rs	gg	MRd	00000	func_code			
EMS-type4: 目标操作数为 MRd,第一源操作数为 MRs,第二源操作数来自 memory											
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0			

MRs disp ARm gg MRd

a) MDS 指令编码

功能	0	1	2	3	4	5	6	7
码								
0	PSLL	PSHUFD	PSRL	PSRA				
	D/Q/O		D/Q/O	D/Q				
1			PUNPCKH	PUNPCKL				GETBITS/
			BD/DQ/QO	BD/DQ/QO				SHOWBITS
2	PMFHI	PMTHI	PMFLO	PMTLO	PACKSS	PACKUS		
					DB/QD	DB/QD		
3	PMULLSD	PMULLUD	PMACLSD	PMACLUD	PMULHSD	PMULHUD	PMACHSD	PMACHUD*
4	PADDS	PADDUS	PSUBS	PSUBUS	PAND	POR	PXOR	PNOR
	B/D	B/D	B/D	B/D				
5	PMADDQD	PSADBD			PADD		PSUB	
					B/D/Q		B/D/Q	
6	PCMPGT				PCMPEQ			PLOADO
	B/D/Q				B/D/Q		_	
7	PMAXSD	PMAXUB	PMINSD	PMINUB	PAVG			PSTOREO
					B/D			

b) EMS 指令编码

功能	0	1	2	3	4	5	6	7
码								
0	EPSLL	EPSHUFD	EPSRL	EPSRA		EPSHUFLD	EPSHUFHD	
	D/Q/O		D/Q/O	D/Q				
1			EPUNPCKH	EPUNPCKL				
			BD/DQ/QO	BD/DQ/QO				
2					EPACKSS	EPACKUS		
					DB/QD	DB/QD		
3	EPMULLSD	EPMULLUD	EPMACLSD	EPMACLUD	EPMULHSD	EPMULHUD	EPMACHSD	EPMACHUD
4	EPADDS	EPADDUS	EPSUBS	EPSUBUS	EPAND	EPOR	EPXOR	EPNOR
	B/D	B/D	B/D	B/D				
5	EPMADDQD	EPSADBD			EPADD		EPSUB	
					B/D/Q		B/D/Q	
6	EPCMPGT				EPCMPEQ	EPLOADOL	EPLOADOR	EPLOADO
	B/D/Q				B/D/Q			
7	EPMAXSD	EPMAXUB	EPMINSD	EPMINUB	EPAVG			EPSTOREO
					B/D			

ABS_SW

句型: ABS_SW dst, mod(ARn), mod(ARm), src2

指令编码:

31 30 29 28 27 26	25 2	4 23 22 21	20 19	18 17 1	6 15 14	13 12 11	10	9 8	3 7	6	5	4	3	2	1 0
111011	0 0	Src1	Modn	Src2	Modn	n Dst	0	ľ	Modr	1	A	ARm	ı	A	Rn

操作: $|\text{modm}(ARm)| \rightarrow GPR(dst)$ $|| GPR(src2) \rightarrow modn(ARn)$

操作数说明:

Src2:寄存器(通用寄存器 0~7)ARm:间接寻址 (辅助寄存器 0~7)ARn:间接寻址 (辅助寄存器 0~7)Dst:寄存器(通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

> ABS_SW R2, *+AR7(IR1), *AR0--(IR0), R3 操作: |mem(*AR0--(IR0))| → GPR(R2),

> > $GPR(R3) \rightarrow mem(*+AR7(IR1))$

ADD

句型:	ADD	rd, rs, rt	或者
	ADD	dst, *+ARm(disp1), *+ARn(disp2)	或者
	ADD	dst, mod(ARm), rt	或者
	ADD	dst, *+ARm(disp), Imm	或者
	ADD	dst, rs, mod(ARm)	或者
	ADD	dst, rs, *+ARm(disp)	或者
	ADD	dst, mod(ARm), mod(ARn)	

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000		rs		rt		rd	00000	100000
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	Disp1	ARm	Disp1	ARn	00	dst	Disp2 1	100000
						<u> </u>	'	
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	00	ARm		rt	01	dst	Modm 1	100000
						<u>'</u>	,	
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	01	ARm	j	imm	01	dst	Disp 1	100000
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000		rs	00	ARm	10	dst	Modm 1	100000
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000		rs	01	ARm	10	dst	Disp 1	100000
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	Modn	ı ARm	Modm	ARn	11	dst	Modn 1	100000

操作: GPR(Rs) + GPR(rt) → GPR(rd) 或者
Mem(*+ARm(disp1)) + mem(*+ARn(disp2)) → GPR(dst) 或者
mod(ARm) + GPR(Rt) → GPR(dst) 或者
Mem(*+ARm(disp)) + sign(Imm) → GPR(dst)

Mem(*+ARm(disp)) + sign(Imm) → GPR(dst) 或者
GPR(Rs) + mod(ARm) → GPR(dst) 或者

或者

 $GPR(Rs) + mem(*+ARm(disp)) \rightarrow GPR(dst)$

 $Modm(ARm) + modn(ARn) \rightarrow GPR(dst)$

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
dst: 寄存器 (通用寄存器 0~7)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2				
0	0	*+ARn(disp)寻址	*+ARn(disp)寻址				
01	E=00	间接寻址	寄存器				
01	E=01	*+ARn(disp)寻址	立即数				
10	E=00	寄存器	间接寻址				
10	E=01	寄存器	*+ARn(disp)寻址				
1	1	间接寻址	间接寻址				

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

句型	操作
ADD R5, R3, R7	$GPR(R3) + GPR(R7) \rightarrow GPR(R5)$
ADD R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) + mem(*+AR2(8h)) \rightarrow GPR(R5)$
ADD R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) + GPR(R3) \rightarrow GPR(R5)$
ADD R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) + sign(08h) \rightarrow GPR(R5)$
ADD R5, R3, *AR2++(IR1)	$GPR(R3) + Mem(*AR2++(IR1)) \rightarrow GPR(R5)$
ADD R5, R3, *+AR1(1h)	$GPR(R3) + mem(*+AR1(1h)) \rightarrow GPR(R5)$
ADD R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) + Mem(*AR2++(IR1)) \rightarrow$
ADD R3, 'AR1++(IR0); 'AR2++(IR1)	GPR(R5)

ADDI

句型: ADDI rt, rs, Imm 或者

ADDI dst, @Imm 或者

ADDI dst, mod(ARm)

指令编码:

3	1 .	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
001000 rs					rt					Imm																						
3	1 .	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	001000			11111			11111				00 Dst			Imm																		
3	1 .	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
001000				1	111	11		C)1		Ds	t		N	Лос	lm		Α	Rı	n				D	isp							

操作:

sign(Imm) + GPR(Rs) → GPR(rt) 或者 mem(Imm) + GPR(dst) → GPR(dst) 或者 modm(ARm) + GPR(dst) → GPR(dst)

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) rt: 目标寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) Dst: 目的寄存器 (通用寄存器 0~7)

G: 寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ A Dn(dign)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	++AKII(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	'AKII++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII + (disp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	Aidi(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

ADDI 与 ADDIU 的区别在于前者产生 Overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

	句型	操作
ADDI	R5, R3, 0840h	$sign(0840h) + GPR(R3) \rightarrow GPR(R5)$
ADDI	R5, @0840h	$Mem(0840h) + GPR(R5) \rightarrow GPR(R5)$
ADDI	R5, *AR2++(40h)	$Mem(*AR2++(40h)) + GPR(R5) \rightarrow GPR(R5)$

ADDIU

句型: ADDIU rt, rs, Imm 或者

ADDIU dst, @Imm 或者

ADDIU dst, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
001001	rs	rt	Imm	
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
001001	11111	00 Dst	Imm	
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
001001	11111	01 Dst	Modm ARm Disp	

操作:

sign(Imm) + GPR(Rs) → GPR(rt) 或者 mem(Imm) + GPR(dst) → GPR(dst) 或者 modm(ARm) + GPR(dst) → GPR(dst)

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) rt: 目标寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) Dst: 目的寄存器 (通用寄存器 0~7)

G: 寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	- AKil(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	Aktii++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(uisp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	Akii + (disp)/6	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

ADDI 与 ADDIU 的区别在于前者产生 Overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

句型	操作
ADDIU R5, R3, 0840h	$sign(0840h) + GPR(R3) \rightarrow GPR(R5)$
ADDIU R5, @0840h	$Mem(0840h) + GPR(R5) \rightarrow GPR(R5)$
ADDIU R5, *AR2++(40h)	$Mem(*AR2++(40h)) + GPR(R5) \rightarrow GPR(R5)$

ADDU

句型:	ADDU	rd, rs, rt	或者
	ADDU	dst, *+ARm(disp1), *+ARn(disp2)	或者
	ADDU	dst, mod(ARm), rt	或者
	ADDU	dst, *+ARm(disp), Imm	或者
	ADDU	dst, rs, mod(ARm)	或者
	ADDU	dst, rs, *+ARm(disp)	或者

ADDU dst, mod(ARm), mod(ARn)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0		
000000		rs		rt		rd	00000	100001		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0		
000000	Disp1	ARm	Disp1	ARn	00	dst	Disp2	100001		
			1 1							
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0		
000000	00	ARm		rt	01	dst	Modm 1	100001		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0		
000000	01	ARm	i	imm	01	dst	Disp 1	100001		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0		
000000		rs	00	ARm	10	dst	Modm 1	100001		
		1 1 1	1 1							
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0		
000000		rs	01	ARm	10	dst	Disp 1	100001		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0		
000000	Modn	ı ARm	Modm	ARn	11	dst	Modn 1	100001		

操作:	$GPR(Rs) + GPR(rt) \rightarrow GPR(rd)$	或者
	$Mem(*+ARm(disp1)) + mem(*+ARn(disp2)) \rightarrow GPR(dst)$	或者
	$mod(ARm) + GPR(Rt) \rightarrow GPR(dst)$	或者
	$Mem(*+ARm(disp)) + sign(Imm) \rightarrow GPR(dst)$	或者
	$GPR(Rs) + mod(ARm) \rightarrow GPR(dst)$	或者
	$GPR(Rs) + mem(*+ARm(disp)) \rightarrow GPR(dst)$	或者
	$Modm(ARm) + modn(ARn) \rightarrow GPR(dst)$	

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
dst: 寄存器 (通用寄存器 0~7)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)

T: 寻址模式选择位。

	Γ	源操作数 1	源操作数 2		
00		*+ARn(disp)寻址	*+ARn(disp)寻址		
01	01 E=00 间接寻址		寄存器		
01	E=01	*+ARn(disp)寻址	立即数		
10	E=00	寄存器	间接寻址		
10 E=01		寄存器	*+ARn(disp)寻址		
11		间接寻址	间接寻址		

描述:

Mod (4bit)	偏移地址的计算	Mod (4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

ADD 和 ADDU 的区别在于前者产生 overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

句型	操作				
ADDU R5, R3, R7	$GPR(R3) + GPR(R7) \rightarrow GPR(R5)$				
ADDU R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) + mem(*+AR2(8h)) \rightarrow GPR(R5)$				
ADDU R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) + GPR(R3) \rightarrow GPR(R5)$				
ADDU R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) + sign(08h) \rightarrow GPR(R5)$				
ADDU R5, R3, *AR2++(IR1)	$GPR(R3) + Mem(*AR2++(IR1)) \rightarrow GPR(R5)$				
ADDU R5, R3, *+AR1(1h)	$GPR(R3) + mem(*+AR1(1h)) \rightarrow GPR(R5)$				
ADDU R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) + Mem(*AR2++(IR1)) \rightarrow$				
ADDU K3, 'AK1++(IK0), 'AK2++(IK1)	GPR(R5)				

ADD_SW

句型: ADD_SW dst, mod(ARn), mod(ARm), src1, src2,

指令编码:

31 30 29 28 27 26	25	24	23 22 21	20 19	18 17 10	5 15 14	13 12 11	10	9	8 7	6	5	4	3	2	1	0
110100	0	0	Src1	Modm	Src2	Modn	n Dst	0		Mod	n	A	ARr	n		AR	n

操作: $GPR(src1) + modm(ARm) \rightarrow GPR(dst)$ \parallel $GPR(src2) \rightarrow modn(ARn)$

操作数说明:

src1: 寄存器 (通用寄存器 0~7) Src2: 寄存器 (通用寄存器 0~7) ARm: 间接寻址 (辅助寄存器 0~7) ARn: 间接寻址 (辅助寄存器 0~7) Dst: 寄存器 (通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:

ADD_SW R2, *+AR7(IR1), *AR0--(IR0), R5, R3 操作: $mem(*AR0--(IR0)) + GPR(R5) \rightarrow GPR(R2)$,

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

AND

句型:	AND	rd, rs, rt	或者
	AND	dst, *+ARm(disp1), *+ARn(disp2)	或者
	AND	dst, mod(ARm), rt	或者
	AND	dst, *+ARm(disp), Imm	或者
	AND	dst, rs, mod(ARm)	或者
	AND	dst, rs, *+ARm(disp)	或者
	AND	dst, mod(ARm), mod(ARn)	

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000		rs		rt		rd	00000	100100
					<u>'</u>			
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2 1	100100
						<u> </u>		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	00	ARm		rt	01	Dst	Modm 1	100100
						<u>'</u>	1	
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	01	ARm	j	imm	01	Dst	Disp 1	100100
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000		rs	00	ARm	10	Dst	Modm 1	100100
							, , , , , , , , , , , , , , , , , , , ,	
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000		rs	01	ARm	10	Dst	Disp 1	100100
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	Modn	ı ARm	Modm	ARn	11	Dst	Modn 1	100100

操作: GPR(Rs) and $GPR(rt) \rightarrow GPR(rd)$ 或者 Mem(*+ARm(disp1)) and $mem(*+ARn(disp2)) \rightarrow GPR(dst)$ 或者 mod(ARm) and $GPR(Rt) \rightarrow GPR(dst)$ 或者 Mem(*+ARm(disp)) and $sign(Imm) \rightarrow GPR(dst)$ 或者 GPR(Rs) and $mod(ARm) \rightarrow GPR(dst)$ 或者 GPR(Rs) and $mem(*+ARm(disp)) \rightarrow GPR(dst)$ 或者

Modm(ARm) and $modn(ARn) \rightarrow GPR(dst)$

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)
Dst: 寄存器 (通用寄存器 0~7)

T: 寻址模式选择位。

7	Γ	源操作数 1	源操作数 2		
00		*+ARn(disp)寻址	*+ARn(disp)寻址		
01	E=00	间接寻址	寄存器		
01	E=01	*+ARn(disp)寻址	立即数		
10	E=00	寄存器	间接寻址		
10 E=01		寄存器	*+ARn(disp)寻址		
11		间接寻址	间接寻址		

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

句型	操作
AND R5, R3, R7	$GPR(R3)$ and $GPR(R7) \rightarrow GPR(R5)$
AND R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h))$ and $mem(*+AR2(8h)) \rightarrow GPR(R5)$
AND R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1))$ and $GPR(R3) \rightarrow GPR(R5)$
AND R5, *+AR1(1h), 08h	$Mem(*+AR1(1h))$ and $sign(08h) \rightarrow GPR(R5)$
AND R5, R3, *AR2++(IR1)	$GPR(R3)$ and $Mem(*AR2++(IR1)) \rightarrow GPR(R5)$
AND R5, R3, *+AR1(1h)	$GPR(R3)$ and $mem(*+AR1(1h)) \rightarrow GPR(R5)$
AND R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) and Mem(*AR2++(IR1)) \rightarrow$
AND K3, 'AK1++(IKU), 'AK2++(IK1)	GPR(R5)

ANDI

句型: ANDI rt, rs, Imm 或者

ANDI dst, @Imm 或者

ANDI dst, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
001100	rs	rt	Imm	
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
001100	11111	00 dst	Imm	,
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0
001100	11111	01 dst	Modm ARm Disp	

操作:

GPR(Rs) and zero(Imm) → GPR(rt) 或者 GPR(dst) and mem(Imm) → GPR(dst) 或者

GPR(dst) and $modm(ARm) \rightarrow GPR(dst)$

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) rt: 目标寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) Dst: 目的寄存器 (通用寄存器 0~7)

G: 寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dign)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	· ++AKII(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(uisp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	·AKII++(uisp)	01100	*ARn++(IR1)
10101	*ADn (dign)	00101	*ARn(IR0)
10101	*ARn(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII++(disp)/6	01110	*ARn++(IR1)%
10111	*ADn (disn)0/	00111	*ARn(IR0)%
10111	*ARn(disp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

	句型	操作
ANDI	R5, R3, 0840h	$GPR(R3)$ and $zero(0840h) \rightarrow GPR(R5)$
ANDI	R5, @0840h	$GPR(R5)$ and $mem(0840h) \rightarrow GPR(R5)$
ANDI	R5, *AR2++(40h)	$GPR(R5)$ and $mem(AR2) \rightarrow GPR(R5)$, $AR2=AR2+40h$

AND_SW

句型: AND_SW dst, mod(ARn), mod(ARm), src1, src2 指令编码:

31 30 29 28 27 26	25	24	23 22	21	20 19	18	17	16	15	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
110100	0	1	Src	1	Modr	n	Src	2	Mo	lm]	Dst		0		M	odr	1	A	ARı	n		AR	n

操作: modm(ARm) AND GPR(src1) → GPR(dst) || GPR(src2) → modn(ARn) 操作数说明:

src1:寄存器(通用寄存器 0~7)ARm:间接寻址 (辅助寄存器 0~7)Dst:寄存器(通用寄存器 0~7)Src2:寄存器(通用寄存器 0~7)ARn:间接寻址 (辅助寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

AND_SW R2, *+AR7(IR1), *AR0--(IR0), R5, R3 操作: mem(*AR0--(IR0)) and $GPR(R5) \rightarrow GPR(R2)$,

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

BEQ

句型: BEQ rs, rt, offset

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000100	rs	rt	offset

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$, $(GPR[rs] = GPR[rt]) \rightarrow condition$

if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31) rd: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

转移的目标地址是延迟槽指令地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。寄存器 rs 和 rt 的内容相比较,若两寄存器相等则转移。此指令有一个指令的时延。条件转移指令

执行周期: 1 cycle

举例:

BEQ r5, r6, 0x100

操作: $0x400 \rightarrow target$, $(GPR[r5] = GPR[r6]) \rightarrow condition$

BLEZ

句型: BLEZ rs, offset

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(000)11(0				rs				0	000	00									of	fse	t						

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$, $(GPR[rs]_{31} = 1)$ or $(GPR[rs] = 0^{32}) \rightarrow condition$ if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

转移的目标地址是延迟槽指令的地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。寄存器 rs 的内容同零相比较,若通用寄存器 rs 的符号位设置或等于零,则程序转移到目标地址。此指令有一个指令的时延。条件转移指令

执行周期: 1 cycle

举例:

BLEZ r5, 0x100

操作: $0x400 \rightarrow target$, $(GPR[r5]_{31} = 1)$ or $(GPR[r5] = 0^{32}) \rightarrow condition$

BLTZ

句型: BLTZ rs, offset

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000001	rs	00000	offset

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$, $(GPR[rs]_{31} = 1) \rightarrow condition$

if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

转移的目标地址是延迟槽指令的地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。寄存器 rs 的内容同零相比较,若通用寄存器 rs 的符号位设置,

则程序转移到目标地址。此指令有一个指令的时延。条件转移指令

执行周期: 1 cycle

举例:

BLTZ r5, 0x100

操作: $0x400 \rightarrow target$, $(GPR[r5]_{31} = 1) \rightarrow condition$

BLTZAL

句型: BLTZAL rs, offset

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(000	000	1				rs				1	000	00									of	fse	t						

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$,

 $(GPR[rs]_{31} = 1) \rightarrow condition,$

 $PC + 8 \rightarrow GPR[31]$

if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

转移的目标地址是延迟槽指令的地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。延迟槽后面的指令地址放入连接寄存器 r31 中,若寄存器 rs 的符号位设置,则程序转移到目标地址。此指令有一个指令的时延。通用寄存器 rs 不是 r31。条件转移指令

执行周期: 1 cycle

举例:

BLTZAL r5, 0x100

操作: $0x400 \rightarrow target$, $(GPR[r5]_{31} = 1) \rightarrow condition$

 $PC + 8 \rightarrow GPR[31]$

BGEZ

句型: BGEZ rs, offset

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	(000	000	1				rs				0	000	1									of	fse	t						

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$, $(GPR[rs]_{31} = 0) \rightarrow condition$

if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

转移的目标地址是延迟槽指令的地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。寄存器 rs 的内容同零相比较,若通用寄存器 rs 的符号位清除,

则程序转移到目标地址。此指令有一个指令的时延。条件转移指令

执行周期: 1 cycle

举例:

BGEZ r5, 0x100

操作: $0x400 \rightarrow target$, $(GPR[r5]_{31} = 0) \rightarrow condition$

BGEZAL

句型: BGEZAL rs, offset

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000001	Rs	10001	offset

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$,

 $(GPR[rs]_{31} = 0) \rightarrow condition,$

 $PC + 8 \rightarrow GPR[31]$

if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

转移的目标地址是延迟槽指令的地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。延迟槽后面的指令地址放入连接寄存器 r31 中,若寄存器 rs 的符号位清除,则程序转移到目标地址。此指令有一个指令的时延。通用寄存器 rs 不是 r31。条件转移指令

执行周期: 1 cycle

举例:

BGEZAL r5, 0x100

操作: $0x400 \rightarrow target$, $(GPR[r5]_{31} = 0) \rightarrow condition$

 $PC + 8 \rightarrow GPR[31]$

BGTZ

句型: BGTZ rs, offset

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000111	rs	00000	offset

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$,

 $(GPR[rs]_{31} = 0)$ and $(GPR[rs] \neq 0^{32}) \rightarrow condition$

if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

跳转的目标地址是延迟槽指令的地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。寄存器 rs 的内容同零相比较,若通用寄存器 rs 的符号位清除且不等于零,则程序转移到目标地址。此指令有一个指令的时延。条件转移指令

执行周期: 1 cycle

举例:

BGTZ r5, 0x100

操作: 0x400 → target,

 $(GPR[r5]_{31} = 0)$ and $(GPR[r5] \neq 0^{32}) \rightarrow condition$

BNE

句型: BNE rs, rt, offset

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000101	rs	rt	offset

操作: $sign(offset) \parallel offset \parallel 0^2 \rightarrow target$, $(GPR[rs] \neq GPR[rt]) \rightarrow condition$

if condition then PC + target \rightarrow PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31) rd: 寄存器 (通用寄存器 0~31)

offset: 立即数 PC: 指令地址

描述:

转移的目标地址是延迟槽指令地址同 16 位 offset 左移 2 位后的符号扩展到的 32 位的数之和。寄存器 rs 和 rt 的内容相比较,若两寄存器不相等则转移。此指令有一个指令的时延。条件转移指令

执行周期: 1 cycle

举例:

BNE r5, r6, 0x100

操作: $0x400 \rightarrow target$, $(GPR[r5] \neq GPR[r6]) \rightarrow condition$

EPACKSSDB/QD

句型: EPACKSSDB/QD MRd, MRs, MRt

EPACKSSDB/QD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	010100

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	11	MRs	disp	ARm	gg	MRd	Modm	010100

操作:

EPACKSSDB:

MRd[7..0] ← SaturateSignedDouble-byteToSignedByte MRs[15..0];

MRd[15..8] ← SaturateSignedDouble-byteToSignedByte MRs [31..16];

MRd[23..16] ← SaturateSignedDouble-byteToSignedByte MRs[47..32];

MRd[31..24] ← SaturateSignedDouble-byteToSignedByte MRs[63..48];

MRd[39..32]

SaturateSignedDouble-byteToSignedByte MRs[79..64];

 $MRd[47..40] \leftarrow SaturateSignedDouble-byteToSignedByte\ MRs[95..80];$

MRd[55..48] ← SaturateSignedDouble-byteToSignedByte MRs[111..96];

MRd[63..56] ← SaturateSignedDouble-byteToSignedByte MRs[127..112];

MRd[71..64] ← SaturateSignedDouble-byteToSignedByte MRt[15..0];

MRd[79..72] ← SaturateSignedDouble-byteToSignedByte MRt [31..16];

MRd[87..80] ← SaturateSignedDouble-byteToSignedByte MRt[47..32];

MRd[95..88] ← SaturateSignedDouble-byteToSignedByte MRt[63..48];

MRd[103..96] ← SaturateSignedDouble-byteToSignedByte MRt[79..64];

MRd[111..104]

SaturateSignedDouble-byteToSignedByte MRt[95..80];

MRd[111..104]

SaturateSignedDouble-byteToSignedByte MRt[111..06];

MRd[119..112] ← SaturateSignedDouble-byteToSignedByte MRt[111..96];

MRd[127..120] ← SaturateSignedDouble-byteToSignedByte MRt[127..112];

EPACKSSOD:

MRd[15..0] ←SaturateSignedDwordToSignedword MRs[31..0];

MRd[31..16] ←SaturateSignedDwordToSignedword MRs[63..32];

MRd[47..32] ←SaturateSignedDwordToSignedword MRs[95..64];

MRd[63..48] ←SaturateSignedDwordToSignedword MRs[127..96];

 $MRd[79..64] \quad \leftarrow SaturateSignedDwordToSignedword\ MRt[31..0];$

MRd[95..80] ←SaturateSignedDwordToSignedword MRt[63..32];

 $MRd[111..96] \leftarrow SaturateSignedDwordToSignedword MRt[95..64];$

MRd[127..112]←SaturateSignedDwordToSignedword MRt[127..96];

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述:

EPACKSSDB 将 128-bit MRs 操作数中打包的 8 个有符号 2 字节数和 128-bit MRt 操作数中打包的 8 个有符号 2 字节数转换为 16 个有符号字节数,采用有符号饱和法处理溢出,结果存入 MRd 操作数。

EPACKSSQD将128-bit MRs操作数中打包的4个有符号4字节数和128-bit MRt操作数中打包的4个有符号4字节数转换为8个有符号2字节数,采用有符号饱

和法处理溢出,结果存入 MRd 操作数。

EPACKUSDB/QD

句型: EPACKUSDB/QD MRd, MRs, MRt

EPACKUSDB/QD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	010101

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	0
111100	11	MRs	disp	ARm	gg	MRd	Modm	010101	

操作:

EPACKUSDB:

MRd[7..0] ← SaturateUnsignedDouble-byteToUnsignedByte MRs[15..0];

MRd[15..8] ← SaturateUnsignedDouble-byteToUnsignedByte MRs [31..16];

MRd[23..16] ← SaturateUnsignedDouble-byteToUnsignedByte MRs[47..32];

MRd[31..24] ← SaturateUnsignedDouble-byteToUnsignedByte MRs[63..48];

MRd[39..32] ← SaturateUnsignedDouble-byteToUnsignedByte MRs[79..64];

MRd[47..40] ← SaturateUnsignedDouble-byteToUnsignedByte MRs[95..80];

MRd[55..48] ← SaturateUnsignedDouble-byteToUnsignedByte MRs[111..96];

 $MRd[63..56] \leftarrow SaturateUnsignedDouble-byteToUnsignedByte MRs[127..112];$

MRd[71..64] ← SaturateUnsignedDouble-byteToUnsignedByte MRt[15..0];

MRd[79..72] ← SaturateUnsignedDouble-byteToUnsignedByte MRt [31..16];

MRd[87..80] ← SaturateUnsignedDouble-byteToUnsignedByte MRt[47..32];

MRd[95..88] ← SaturateUnsignedDouble-byteToUnsignedByte MRt[63..48];

MRd[103..96]

Saturate Unsigned Double-byte To Unsigned Byte MRt[79..64];

MRd[111..104]

SaturateUnsignedDouble-byteToUnsignedByte MRt[95..80];

MRd[119..112] ← SaturateUnsignedDouble-byteToUnsignedByte MRt[111..96];

MRd[127..120] ← SaturateUnsignedDouble-byteToUnsignedByte MRt[127..112];

EPACKUSOD:

MRd[15..0] ←SaturateUnsignedDwordToUnsignedword MRs[31..0];

MRd[31..16] ← SaturateUnsignedDwordToUnsignedword MRs[63..32];

MRd[47..32] ← SaturateUnsignedDwordToUnsignedword MRs[95..64];

MRd[63..48] ← SaturateUnsignedDwordToUnsignedword MRs[127..96];

MRd[79..64] ← SaturateUnsignedDwordToUnsignedword MRt[31..0];

MRd[95..80] ← SaturateUnsignedDwordToUnsignedword MRt[63..32];

 $MRd[111..96] \leftarrow SaturateUnsignedDwordToUnsignedword MRt[95..64];$

MRd[127..112] ← SaturateUnsignedDwordToUnsignedword MRt[127..96];

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述:

EPACKUSDB 将 128-bit MRs 操作数中打包的 8 个无符号 2 字节数和 128-bit MRt 操作数中打包的 8 个无符号 2 字节数转换为 16 个无符号字节数,采用无符号饱和法处理溢出,结果存入 MRd 操作数。

EPACKUSQD将128-bit MRs操作数中打包的4个无符号4字节数和128-bit MRt操作数中打包的4个无符号4字节数转换为8个无符号2字节数,采用无符号饱

和法处理溢出,结果存入 MRd 操作数。

EPADDB/D/Q

句型: EPADDB/D/Q MRd, MRs, MRt

EPADDB/D/Q MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	101100

31 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
]	111	100)		1	1	I	MR	s	dis	sp	Α	Rn	1	og.	g	N	1Rc	1		M	odı	m				101	1100	0	

操作:

EPADDB instruction with 128-bit operands:

 $MRd[7..0] \leftarrow MRs[7..0] + MRt[7..0];$

* repeat add operation for 2nd through 15th byte *;

 $MRd[127..120] \leftarrow MRs[127..120] + MRt[127..120];$

EPADDD instruction with 128-bit operands:

 $MRd [15..0] \leftarrow MRs [15..0] + MRt [15..0];$

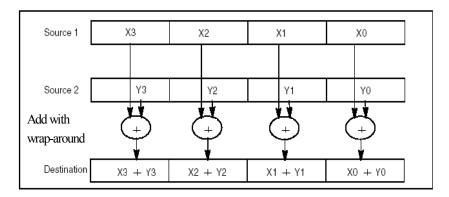
* repeat add operation for 2nd and 7th double-byte *;

 $MRd[127..112] \leftarrow MRs[127..112] + MRt[127..112];$

EPADDQ instruction with 128-bit operands:

 $MRd[31..0] \leftarrow MRs[31..0] + MRs[31..0];$

* repeat add operation for 2nd and 3th word *;


 $MRd[127..96] \leftarrow MRs[127..96] + MRt[127..96];$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPADDB/D/Q 对 128-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 128-bit MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 加法,结果存入 MRd 操作数中,溢出被忽略。下图示例 EPADDQ 的操作过程,其它类推。

执行周期: 1 cycle

EPADDSB/D

句型: EPADDSB/D MRd, MRs, MRt

EPADDSB/D MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
1111100	01	MRs	00	MRt	gg	MRd	00000	100000

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111100	11	MRs	disp	ARm	gg	MRd	Modm	100000	

操作:

EPADDSB instruction with 128-bit operands:

MRd[7..0] ← SaturateToSignedByte(MRs[7..0] + MRt [7..0]);

* repeat add operation for 2nd through 15th bytes *;

MRd[127..120] SaturateToSignedByte(MRs[127..120] + MRt[127..120]);

EPADDSD instruction with 128-bit operands:

MRd [15..0] SaturateToSignedDouble-byte(MRs [15..0] + MRt [15..0]);

* repeat add operation for 2nd and 3rd double-bytes *;

MRd [127..112] ← SaturateToSignedDouble-byte(MRs [127..112] + MRt [127..112]);

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPADDSB 对 128 - bit MRs 操作数中 16 个打包的字节数和 128 - bit MRt 操作数中 16 个打包的字节数,执行 SIMD 有符号加法,使用有符号饱和处理溢出,结果存入 MRd 操作数中相应的位置。

EPADDSD 对 128—bit MRs 操作数中 8 个打包的 2 字节数和 128—bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 有符号加法,使用有符号饱和处理溢出,结果存入 MRd 操作数中相应的位置。

EPADDUSB/D

句型: EPADDUSB/D MRd, MRs, MRt

EPADDUSB/D *MRd, MRs, Modm(ARm)*

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	100001

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0)
111100	11	MRs	disp	ARm	gg	MRd	Modm	100001	

操作:

EPADDUSB instruction with 128-bit operands:

MRd[7..0] ← SaturateToUnsignedByte(MRs[7..0] + MRt [7..0]);

* repeat add operation for 2nd through 15th bytes *;

MRd[127..120] ← SaturateToUnsignedByte(MRs[127..120] + MRt[127..120]);

EPADDUSD instruction with 128-bit operands:

MRd [15..0] ← SaturateToUnsignedDouble-byte(MRs [15..0] + MRt [15..0]);

* repeat add operation for 2nd and 3rd double-bytes *;

MRd [127..112] SaturateToUnsignedDouble-byte(MRs [127..112] + MRt [127..112]);

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPADDUSB 对 128-bit MRs 操作数中 16 个打包的字节数和 128-bit MRt 操作数中 16 个打包的字节数,执行 SIMD 无符号加法,使用无符号饱和处理溢出,结果存入 MRd 操作数中相应的位置。

EPADDUSD 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 无符号加法,使用无符号饱和处理溢出,结果存入 MRd 操作数中相应的位置。

EPAND

句型: EPAND MRd, MRs, MRt

EPAND MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	100100

31 30 29 28 2	7 26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111100		1	1]	MR	Rs	dis	sp	A	ιRn	1	g	g	N	4Rc	i		M	odı	m				100	100	0	

操作:

PAND:

MRd ← MRs AND MRt;

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PAND 对 128-bit MRs 操作数和 128-bit MRt 操作数,执行按位逻辑与运算,结果存入 MRd 操作数。

EPAVGB/D

句型: EPAVGB/D MRd, MRs, MRt

EPAVGB/D MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3	2 1	0
111100	01	MRs	00	MRt	gg	MRd	00000	111	1100	

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	11	MRs	disp	ARm	gg	MRd	Modm	111100

操作:

EPAVGB instruction with 128-bit operands:

 $MRt[7-0] \leftarrow (MRt[7-0] + MRs[7-0] + 1] >> 1; * temp sum before shifting is 9 bits *$

* repeat operation performed for bytes 2nd through 15th;

 $MRt[127-120] \leftarrow (MRt[127-120] + MRs[127-120] + 1) >> 1;$

EPAVGD instruction with 128-bit operands:

 $MRt[15-0] \leftarrow (MRt[15-0] + MRs[15-0] + 1) >> 1$; * temp sum before shifting is 17 bits *

* repeat operation performed for double-bytes 2 and 7;

 $MRt[127-112] \leftarrow (MRt[127-112] + MRs[127-112] + 1) >> 1;$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: EPAVGB/D 对 128 - bit MRs 操作数中打包的字节数/2 字节数和 128 - bit MRt 操作数中打包的字节数/2 字节数,执行 SIMD 加法,每个和值再加 1,相应结果右移 1bit 作为 2 个数的平均值,存入 MRd 操作数中。

EPCMPEQB/D/Q

句型: EPCMPEQB/D/Q MRd, MRs, MRt

EPCMPEQB/D/Q MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	110100

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 (0
111100	11	MRs	disp	ARm	gg	MRd	Modm	110100	

操作:

EPCMPEQB instruction with 128-bit operands:

IF MRs[7..0] = MRt[7..0]

THEN $MRd[7\ 0] \leftarrow FFH;$

ELSE MRd[7..0] \leftarrow 0;

* Continue comparison of 2nd through 15th bytes in MRd and MRt *

IF MRs[127..120] = MRt[127..120]

THEN MRd[127..120] ← FFH;

ELSE $MRd[127..120] \leftarrow 0$;

EPCMPEQD instruction with 128-bit operands:

IF MRs[15..0] = MRt[15..0]

THEN $MRd[15..0] \leftarrow FFFFH$;

ELSE MRd[15..0] \leftarrow 0;

* Continue comparison of 2nd and 7th double-bytes in MRd and MRt *

IF MRs[127..112] = MRt[127..112]

THEN $MRd[127..112] \leftarrow FFFFH$;

ELSE $MRd[127..112] \leftarrow 0$;

EPCMPEQQ instruction with 128-bit operands:

IF MRs[31..0] = MRt[31..0]

THEN MRd[31..0] ← FFFFFFFFH;

ELSE MRd[31..0] \leftarrow 0;

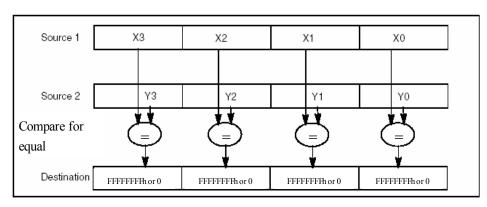
* Continue comparison of 2nd and 3rd 4-bytes in MRd and MRt *

IF MRs[127..96] = MRt[127..96]

THEN MRd[127..96] ← FFFFFFFFH;

ELSE MRd[127..96] \leftarrow 0;

操作数说明: MRs: MDS 寄存器


MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: EPCMPEQB/D/Q 对 128-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 128-bit MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 相等比较,如果相等结果全置 1,否则全置 0,结果存入 MRd 操作数中。下图示例了 EPCMPEQQ 的操作过程,其它类推。

执行周期: 1 cycle

EPCMPGTB/D/Q

句型: EPCMPGTB/D/Q MRd, MRs, MRt

EPCMPGTB/D/Q MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 (
111100	01	MRs	00	MRt	gg	MRd	00000	110000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	111	100)		1	1]	MR	s	dis	sp	A	ιRn	n	Q	g	N	/IRc	d		M	odı	m				110	000	0	

操作:

EPCMPGTB instruction with 128-bit operands:

IF MRs[7..0] >MRt[7..0]

THEN $MRd[70] \leftarrow FFH$;

ELSE MRd[7..0] \leftarrow 0;

* Continue comparison of 2nd through 15th bytes in MRd and MRt *

IF MRs[127..120] > MRt[127..120]

THEN $MRd[127..120] \leftarrow FFH$;

ELSE $MRd[127..120] \leftarrow 0$;

EPCMPGTD instruction with 128-bit operands:

IF MRs[15..0] > MRt[15..0]

THEN $MRd[15..0] \leftarrow FFFFH;$

ELSE MRd[15..0] \leftarrow 0;

* Continue comparison of 2nd and 7th double-bytes in MRd and MRt *

IF MRs[127..112] > MRt[127..112]

THEN $MRd[127..112] \leftarrow FFFFH;$

ELSE $MRd[127..112] \leftarrow 0$;

EPCMPGTQ instruction with 128-bit operands:

IF MRs[31..0] > MRt[31..0]

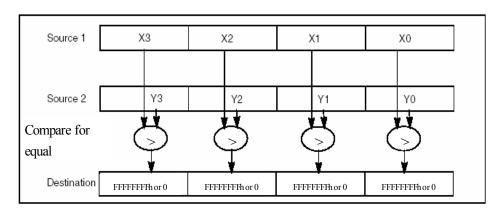
THEN MRd[31..0] ← FFFFFFFFH;

ELSE MRd[31..0] \leftarrow 0;

* Continue comparison of 2nd and 3rd 4-bytes in MRd and MRt *

IF MRs[127..96] > MRt[127..96]

THEN MRd[127..96] ← FFFFFFFFH;


ELSE MRd[127..96] \leftarrow 0;

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPCMPGTB/D/Q 对 128-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 128-bit MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 有符号比较,如果大于结果全置 1,否则全置 0,结果存入 MRd 操作数中。下图示例了 EPCMPGTQ 的操作过程,其它类推。

执行周期: 1 cycle

EPLOADO

句型: EPLOADO MRd, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	11	000	disp	ARm	gg	MRd	Modm	110111

操作:

EPLOADO:

 $MRd[127-0] \leftarrow memory$

操作数说明: MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPLOADO 从 memory 中指定的位置读取 128bit 数据,写入到 MDS 寄存器 MRd 中。

EPLOADOL

句型: EPLOADOL MRd, Modm(ARm)

指令编码:

31	30	29	28	27	7 2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	10	0			1	1		00	0	dis	sp	A	Rn	1	g	gg	N	ΛRα	l		M	od	m				110)10	1	

操作:

EPLOADOL:

Vaddr = Mod(ARm),

 $MRd[127-0] \leftarrow Left (mem(Vaddr))$

操作数说明: MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPLOADOL 从 memory 中指定的位置读取不大于 128bit 数据, 左对齐写入到 MDS 寄存器 MRd 中。如图所示: (空白部分保持不变,每个方格表示一个字节)

(ARm[1:0])

00	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	x ₉	x ₈	x ₇	x ₆	x ₅	x ₄	x ₃	x ₂	x ₁	x ₀	On-Chip RAM
																	EMRx
01	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	x ₇	x ₆	x ₅	x ₄	x ₃	x ₂	x ₁		On-Chip RAM
	x ₀																EMRx
10	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	X ₇	x ₆	x ₅	x ₄	x ₃	x ₂			On-Chip RAM
	x ₁	\mathbf{x}_0															EMRx
11	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	x ₇	x ₆	x ₅	x ₄	x ₃				On-Chip RAM
	x ₂	\mathbf{x}_1	x ₀														EMRx

EPLOADOR

句型: EPLOADOR MRd, Modm(ARm)

指令编码:

31	30	29	28	32	7 2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	10	0			1	1		00	0	dis	sp	A	Rn	1	g	g	N	/IRc	i		M	odı	m				110)11()	

操作:

EPLOADOR:

Vaddr = Mod(ARm),

 $MRd[127-0] \leftarrow Right (mem(Vaddr))$

操作数说明: MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPLOADOR 从 memory 中指定的位置读取不大于 128bit 数据, 右对齐写入到 MDS

寄存器 MRd 中。如图所示: (空白部分保持不变,每个方格表示一个字节)

(ARm[1:0])

00	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	x ₉	x ₈	x ₇	x ₆	x ₅	x ₄	x ₃	x ₂	x ₁	x ₀	On-Chip RAM
	X15	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	x ₇	x ₆	x ₅	x ₄	x ₃	x ₂	\mathbf{x}_1	x ₀	EMRx
01	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X ₉	X ₈	x ₇	x ₆	X ₅	X ₄	x ₃	x ₂	x ₁		On-Chip RAM
		x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₀	x ₁₀	X ₉	x ₈	x ₇	x ₆	x ₅	x ₄	x ₃	x ₂	x ₁	EMRx
10	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	X ₇	x ₆	x ₅	x ₄	x ₃	x ₂			On-Chip RAM
			x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	X7	x ₆	x ₅	x ₄	x ₃	x ₂	EMRx
11	x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	x ₇	x ₆	x ₅	X ₄	x ₃				On-Chip RAM
				x ₁₅	x ₁₄	x ₁₃	x ₁₂	x ₁₁	x ₁₀	X9	x ₈	X7	x ₆	x ₅	x ₄	x ₃	EMRx

EPMADDQD

句型: EPMADDQD MRd, MRs, MRt

EPMADDQD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	101000

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111100	11	MRs	disp	ARm	gg	MRd	Modm	101000	

操作:

EPMADDQD instruction with 128-bit operands:

 $MRd[31..0] \leftarrow (MRs[15..0] \times MRt[15..0]) + (MRs[31..16] \times MRt[31..16]);$

* repeat operation performed for bytes 2nd through 3rd *;

 $MRd[127..96] \leftarrow (MRs[111..96] \times MRt[111..96]) + (MRs[127..112] \times MRt[127..112]);$

描述: EPMADDQD 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 有符号乘法,然后相邻的 2 个 32-bit 结果相加成 1 个 32-bit 结果,最后结果存入 MRd 操作数。

执行周期: 4 cycles

^{*} Signed multiplication *

EPMAXSD

句型: EPMAXSD MRd, MRs, MRt

EPMAXSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111100	01	MRs	00	MRt	gg	MRd	00000	111000	

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 1	6 15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	11	MRs	disp	ARm	gg	MRd	Modm	111000

操作:

EPMAXSD instruction for 128-bit operands:

IF MRs[15-0] > MRt[15-0]) THEN

 $(MRd[15-0] \leftarrow MRd[15-0];$

ELSE

 $(MRd[15-0] \leftarrow MRt[15-0];$

FΙ

* repeat operation for 2nd and 7th double-bytes in source and destination operands *

IF MRs[127-112] > MRt[127-112]) THEN

 $(MRd[127-112] \leftarrow MRd[127-112];$

ELSE

 $(MRd[127-112] \leftarrow MRt[127-112];$

FΙ

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPMAXSD 对 128-bit MRs 操作数中 8 个打包的有符号 2 字节数和 128-bit MRt 操作数中 8 个打包的有符号 2 字节数, 执行 SIMD 有符号比较, 相应较大的数存入 MRd 操作数中。

EPMAXUB

句型: EPMAXUB MRd, MRs, MRt

EPMAXUB MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	111001

31 30 29 28	27 26	25 2	24 23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111100		11		MR	ls	dis	sp	A	Rn	ı	g	g	N	1Rc	ł		M	odı	n				111	001	1	

操作:

EPMAXUB instruction for 128-bit operands:

IF MRs[7-0] > MRt[17-0]) THEN

 $(MRd[7-0] \leftarrow MRd[7-0];$

ELSE

 $(MRd[7-0] \leftarrow MRt[7-0];$

FΙ

* repeat operation for 2nd through 15th bytes in source and destination operands *

IF MRs[127-120] > MRt[127-120]) THEN

 $(MRd[127-120] \leftarrow MRd[127-120];$

ELSE

 $(MRd[127-120] \leftarrow MRt[127-120];$

Fl

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPMAXUB 对 128-bit MRs 操作数中 16 个打包的无符号字节数和 128-bit MRt 操作数中 16 个打包的无符号字节数,执行 SIMD 比较,相应较大的数存入 MRd 操作数中。EPMAXUB 操作过程类似 EPMAXSD。

EPMINSD

句型: EPMINSD MRd, MRs, MRt

EPMINSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	111010

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	0
111100	11	MRs	disp	ARm	gg	MRd	Modm	111010	

操作:

EPMINSD instruction for 128-bit operands:

IF MRs[15-0] < MRt[15-0]) THEN

 $(MRd[15-0] \leftarrow MRd[15-0];$

ELSE

 $(MRd[15-0] \leftarrow MRt[15-0];$

IF

* repeat operation for 2nd and 7th double-bytes in source and destination operands *

IF MRs[127-112] < MRt[127-112]) THEN

 $(MRd[127-112] \leftarrow MRd[127-112];$

ELSE

 $(MRd[127-112] \leftarrow MRt[127-112];$

ΙF

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPMINSD 对 128-bit MRs 操作数中 8 个打包的有符号 2 字节数和 128-bit MRt 操作数中 8 个打包的有符号 2 字节数,执行 SIMD 有符号比较,相应较小的数存入 MRd 操作数中。

EPMINUB

句型: EPMINUB MRd, MRs, MRt

EPMINUB MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	111011

31 30 29 28 27	26 25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	11	MRs	disp	ARm	gg	MRd	Modm	111011

操作:

EPMINUB instruction for 128-bit operands:

IF MRs[7-0] < MRt[17-0]) THEN

 $MRd[7-0] \leftarrow MRd[7-0];$

ELSE

 $MRd[7-0] \leftarrow MRt[7-0];$

IF

* repeat operation for 2nd through 15th bytes in source and destination operands *

IF MRs[127-120] < MRt[127-120]) THEN

 $MRd[127-120] \leftarrow MRd[127-120];$

ELSE

 $MRd[127-120] \leftarrow MRt[127-120];$

ΙF

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPMINUB 对 128-bit MRs 操作数中 16 个打包的无符号字节数和 128-bit MRt 操作数中 16 个打包的无符号字节数,执行 SIMD 比较,相应较小的数存入 MRd 操作数中。EPMINUB 操作过程类似 EPMINSD。

EPMULHSD

EPMACHSD

句型: EPMULHSD MRd, MRs, MRt

EPMACHSD MRd, MRs, MRt

EPMULHSD MRd, MRs, Modm(ARm)

EPMACHSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	011100/011110

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4	3	2	1	0
111100	11	MRs	disp	ARm	gg	MRd	Modm	01	1100	0/01	111	0

操作:

EPMULHSD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

* Signed multiplication *

* repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow TEMP7[31-16];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow TEMP7[31-16];$

EPMACHSD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

- * Signed multiplication *
- * repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[31-16];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow MRd[127-112] + TEMP7[31-16];$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 有符号乘法,每个 32-bit 结果的高 16-bit 存入 MRd 操作数中相应的位置。EPMACHSD 将每次乘法结果不断累加。

执行周期: 2 cycles

EPMULHUD

EPMACHUD

句型: EPMULHUD MRd, MRs, MRt

EPMACHUD MRd, MRs, MRt

EPMULHUD MRd, MRs, Modm(ARm) **EPMACHUD** MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9	8	7	6	5	4	3	2	1	0
111100	01	MRs	00	MRt	gg	MRd	0	0000	00		()111	101	/01	111	1

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4	3	2	1	0
111100	11	MRs	disp	ARm	gg	MRd	Modm	011	101	/01	111	1

操作:

EPMULHUD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

* Unsigned multiplication *

* repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow TEMP0[31-16];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow TEMP7[31-16];$

EPMACHUD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

* Unsigned multiplication *

* repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[31-16];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow MRd[127-112] + TEMP7[31-16];$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 有符号乘法,每个 32-bit 结果的高 16-bit 存入 MRd 操作数中相应的位置。EPMACHUD 将每次乘法结果不断累加。

执行周期: 2 cycles

EPMULLSD

EPMACLSD

句型: EPMULLSD MRd, MRs, MRt

EPMACLSD MRd, MRs, MRt

EPMULLSD MRd, MRs, Modm(ARm)
EPMACLSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5	4 3	2	1 0
111100	01	MRs	00	MRt	gg	MRd	00000	01	11000	0/01	1010

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4	3	2	1	0
111100	11	MRs	disp	ARm	gg	MRd	Modm	011	000	0/01	101	10

操作:

EPMULLSD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

* Signed multiplication *

* repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow TEMP0[15-0];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow TEMP7[15-0];$

EPMACLSD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

- * Signed multiplication *
- * repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[15-0];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow MRd[127-112] + TEMP7[15-0];$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 有符号乘法,每个 32-bit 结果的低 16-bit 存入 MRd 操作数中相应的位置。EPMACLSD 将每次乘法结果不断累加。

执行周期: 2 cycles

EPMULLUD

EPMACLUD

句型: EPMULLUD MRd, MRs, MRt

EPMACLUD MRd, MRs, MRt

EPMULLUD MRd, MRs, Modm(ARm) **EPMACLUD** MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5	4 3	2	1 0
111100	01	MRs	00	MRt	gg	MRd	00000	01	11001	/01	1011

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3	2 1 0
111100	11	MRs	disp	ARm	gg	MRd	Modm	011001	/011011

操作:

EPMULLUD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

* Unsigned multiplication *

* repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow TEMP0[15-0];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow TEMP7[15-0];$

EPMACLUD:

 $TEMP0[31-0] \leftarrow MRs[15-0] \times MRt[15-0];$

- * Unsigned multiplication *
- * repeat operation performed for 2-bytes 2nd through 7th *;

 $TEMP7[31-0] \leftarrow MRs[127-112] \times MRt[127-112];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[15-0];$

* repeat operation performed for 2-bytes 2nd through 7th *;

 $MRd[127-112] \leftarrow MRd[127-112] + TEMP7[15-0];$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 无符号乘法,每个 32-bit 结果的低 16-bit 存入 MRd 操作数中相应的位置。EPMACLUD 将每次乘法结果不断累加。

执行周期: 2 cycles

EPNOR

句型: EPNOR MRd, MRs, MRt

EPNOR *MRd*, *MRs*, *Modm*(*ARm*)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4	4 1 /	1	0
111100	01	MRs	00	MRt	11	MRd	00000	1	0001	1	

31 30 29 28 27 2	5 25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111100	11	MRs	disp	ARm	11	MRd	Modm	100011	

操作:

EPNOR:

MRd ← MRd NOR MRt;

描述: EPNOR 对 128-bit MRs 操作数和 128-bit MRt 操作数,执行按位逻辑或非运算,结果存入 MRd 操作数。

EPOR

句型: EPOR MRd, MRs, MRt

EPOR *MRd, MRs, Modm(ARm)*

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	11	MRd	00000	100101
	ı							
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	11	MRs	disp	ARm	11	MRd	Modm	100101

操作:

EPOR:

MRd ← MRd OR MRt;

描述: EPOR 对 128—bit MRd 操作数和 128—bit MRt 操作数,执行按位逻辑或运算,结果 存入 MRd 操作数。

EPSADBD

句型: EPSADBD MRd, MRs, MRt

EPSADBD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111100	01	MRs	00	MRt	11	MRd	00000	101001	

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	11	MRs	disp	ARm	11	MRd	Modm	101001

操作:

EPSADBD instructions when using 128-bit operands:

 $TEMP0 \leftarrow ABS(MRs[7-0] - MRt[7-0]);$

* repeat operation for bytes 2 through 15 *;

 $TEMP15 \leftarrow ABS(MRs[127-120] - MRt[127-120]);$

 $MRd[23:0] \leftarrow SUM(TEMP0\cdots TEMP15);$

 $MRd[127:24] \leftarrow 0;$

描述: EPSADBD 对 128-bit MRs 操作数中 16 个打包的字节数和 128-bit MRt 操作数中 16 个打包的字节数,执行 SIMD 减法,取绝对值得到绝对差值,然后 16 个绝对差值相加成 1 个 24-bit 无符号数,存入 MRd 操作数的低 24-bit,MRd 操作数的高 104bit 置 0。

执行周期: 3 cycles

EPSHUFQ

句型: EPSHUFQ MRd, MRs, imm

EPSHUFQ MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000001

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	000001

操作:

EPSHUFQ:

IF (ORDER = 0)

THEN $MRd[31:0] \leftarrow MRs[31:0]$;

IF (ORDER = 1)

THEN $MRd[31:0] \leftarrow MRs[63:32]$;

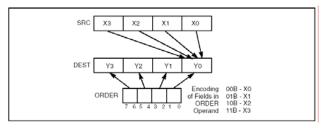
IF (ORDER = 2)

THEN $MRd[31:0] \leftarrow MRs[95:128];$

IF (ORDER = 3)

THEN MRd[31:0] ← MRs[127:96];

IF;


*Repeat operation for 2nd, 3rd, 4rdquad-bytes;

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

Sa: 立即数

描述: MRs 中打包的 4 字节数据作换位排列,换位控制来自 Sa/MRt 的最低 8bit。MRd 中每个 32bit 数据取自 MRs 中 4 个 32bit 数据的其中一个。这样,每个结果 32bit 数据的产生需要 2bit 选择信号,总共需要 8bit 选择信号,由立即数 sa 的最低 8 个 bit 表示(高 2bit 汇编时置 0)。

图中寄存器都是 128 比特的, 所以 X_i, Y_i 都是 32 比特数。

EPSHUFLD

句型: EPSHUFLD MRd, MRs, imm

EPSHUFLD MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000101

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	000101

操作:

EPSHUFLD:

MRd[15-0] <- (MRs >> (ORDER[1-0] * 16))[15-0]

 $MRd[31-16] \leftarrow (MRs >> (ORDER[3-2] * 16))[15-0]$

 $MRd[47-32] \leftarrow (MRs >> (ORDER[5-4] * 16))[15-0]$

MRd[63-48] <- (MRs>> (ORDER[7-6] * 16))[15-0]

 $MRd[127\text{-}128] < - \ MRs[127\text{-}128]$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

Sa: 立即数

描述: MRs 中低 128 位做打包的 2 字节数据作换位排列,换位控制来自 Sa/MRt 的最低 8bit。 MRd 中低 128 位每个 16bit 数据取自 MRs 中低 128 位 4 个 16bit 数据的其中一个。这样,每个结果 16bit 数据的产生需要 2bit 选择信号,总共需要 8bit 选择信号,由立即数 sa 的最低 8 个bit 表示(高 2bit 汇编时置 0)。 MRd 中高 128 位数据直接复制 MRs 中高 128 位数据。

EPSHUFHD

句型: EPSHUFHD MRd, MRs, imm

EPSHUFHD MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000110

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	000110

操作:

EPSHUFHD:

MRd[63-0] <- MRs[63-0]

MRd[79-128] <- (MRs >> (ORDER[1-0] * 16))[15-0]

 $MRd[95-80] \leftarrow (MRs >> (ORDER[3-2] * 16))[15-0]$

MRd[111-96] < (MRs >> (ORDER[5-4] * 16))[15-0]

 $MRd[127-112] \leftarrow (MRs >> (ORDER[7-6] * 16))[15-0]$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

Sa: 立即数

描述: MRs 中高 128 位做打包的 2 字节数据作换位排列,换位控制来自 Sa/MRt 的最低 8bit。 MRd 中高 128 位每个 16bit 数据取自 MRs 中高 128 位 4 个 16bit 数据的其中一个。这样,每个结果 16bit 数据的产生需要 2bit 选择信号,总共需要 8bit 选择信号,由立即数 sa 的最低 8 个bit 表示(高 2bit 汇编时置 0)。 MRd 中低 128 位数据直接复制 MRs 中低 128 位数据。

EPSRAD/Q

句型: EPSRAD/Q MRd, MRs, imm

EPSRAD/Q MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000011

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	000011

操作:

EPSRAD:

IF (COUNT > 15)

THEN COUNT ← 16;

 $MRd[15..0] \leftarrow SignExtend(MRs[15..0] >> COUNT);$

* repeat shift operation for 2nd and 7th double-bytes *;

MRd[127..112] ← SignExtend(MRs[127..112] >> COUNT);

EPSRAQ:

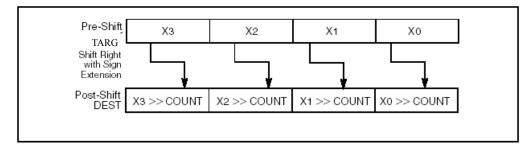
IF (COUNT > 31)

THEN COUNT ← 32;

MRd[31..0] ← SignExtend(MRs[31..0] >> COUNT);

* repeat shift operation for 2nd and 3rd 4-bytes *;

MRd[127..96] ← SignExtend(MRs[127..96] >> COUNT);


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

Sa: 立即数

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 128bit MRs 操作数中打包的 2 字节/4 字节进行 SIMD 算术右移,结果存入 MRd 操作数。下图示例了 EPSRAQ 的操作过程,其它类推。

EPSRLD/Q

句型: EPSRLD/Q/O MRd, MRs, imm

EPSRLD/Q/O MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000010

31 30 29 28 27	7 26	25	24	23 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111100		01		MI	Rs	0	0	N	MR	t	g	g	N	ИR	d		00	000	0				000	010	0	

操作:

EPSRLD:

IF (COUNT > 15)

THEN

 $MRd[128..0] \leftarrow 0$

ELSE

 $MRd[15..0] \leftarrow ZeroExtend(MRs[15..0] >> COUNT);$

* repeat shift operation for 2nd and 7th double-bytes *;

MRd[127..112] ← ZeroExtend(MRs[127..112] >> COUNT);

EPSRLQ:

IF (COUNT > 31)

THEN

 $MRd[128..0] \leftarrow 0$

ELSE

 $MRd[31..0] \leftarrow ZeroExtend(MRs[31..0] >> COUNT);$

* repeat shift operation for 2nd and 3rd 4-bytes *;

MRd[127..96] ← ZeroExtend(MRd[127..96] >> COUNT);

操作数说明: MRs: MDS寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

Sa: 立即数

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 128bit MRs 操作数中打包的 2 字节/4 字节进行 SIMD 逻辑右移,结果存入 MRd 操作数。下图示例了 EPSRLQ 的操作过程,其它类推。

Pre-Shift X3 X2 X1 X0

Shift Right with Zero Extension

Post-Shift DEST X3 >> COUNT X2 >> COUNT X1 >> COUNT X0 >> COUNT

EPSLLD/Q

句型: EPSLLD/Q/O MRd, MRs, imm

EPSLLD/Q/O MRd, MRs, MRt

指令编码:

31 30 2	29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
1	11100	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000000

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	000000

操作:

EPSLLD:

IF (COUNT > 15)

THEN

 $MRd[128..0] \leftarrow 0$

ELSE

 $MRd[15..0] \leftarrow ZeroExtend(MRs[15..0] << COUNT);$

* repeat shift operation for 2nd and 7th double-bytes *;

MRd[127..112] ← ZeroExtend(MRs[127..112] << COUNT);

EPSLLQ:

IF (COUNT > 31)

THEN

 $MRd[128..0] \leftarrow 0$

ELSE

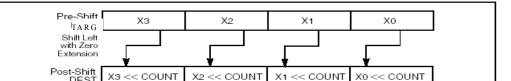
 $MRd[31..0] \leftarrow ZeroExtend(MRs[31..0] << COUNT);$

* repeat shift operation for 2nd and 3rd 4-bytes *;

MRd[127..96] ← ZeroExtend(MRd[127..96] << COUNT);

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器


MRd: MDS 寄存器

Sa: 立即数

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: 对 128bit MRs 操作数中打包的 2 字节/4 字节进行 SIMD 逻辑左移,结果存入 MRd 操作数。下图示例了 EPSLLQ 的操作过程,其它类推。

EPSTOREO

句型: EPSTOREO MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10	9	8	7	6	5	4	3	2	1	0
111100	11	MRs	disp	ARm	11	000		M	odı	n				111	111		

操作:

EPSTOREO:

Memory \leftarrow MRs[127-0]

操作数说明: MRs: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PSTOREO 将 MDS 寄存器 MRs 中的 128bit 数据写入到 memory 中指定的位置。

EPSUBB/D/Q

句型: EPSUBB/D/Q MRd, MRs, MRt

EPSUBB/D/Q MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	101110

3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			111	100)		1	1]	MR	s	dis	sp	A	Rn	1	g	g	N	1Rc	ı		M	odı	m				101	1110)	

操作:

EPSUBB instruction with 128-bit operands:

 $MRd[7..0] \leftarrow MRs[7..0] - MRt[7..0];$

* repeat sub operation for 2nd through 15th byte *;

 $MRd[127..120] \leftarrow MRs[127..120] - MRt[127..120];$

EPSUBD instruction with 128-bit operands:

 $MRd[15..0] \leftarrow MRs[15..0] - MRt[15..0];$

* repeat add operation for 2nd and 7th double-byte *;

 $MRd[127..112] \leftarrow MRs[127..112] - MRt[127..112];$

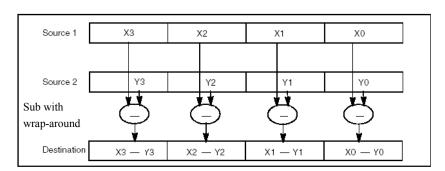
EPSUBQ instruction with 128-bit operands:

 $MRd[31..0] \leftarrow MRs[31..0] - MRt[31..0];$

* repeat add operation for 2nd and 3rd double-byte *;

 $MRd[127..96] \leftarrow MRs[127..96] - MRt[127..96];$

操作数说明: MRs: MDS 寄存器


MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: EPSUBB/D/Q 对 128-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 128-bit MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 减法,结果存入 MRd 操作数中,溢出被忽略。下图示例 EPSUBQ 的操作过程,其它类推。

EPSUBSB/D

句型: EPSUBSB/D MRd, MRs, MRt

EPSUBSB/D MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	100001

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1
111100	11	MRs	disp	ARm	gg	MRd	Modm	100001

操作:

EPSUBSB instruction with 128-bit operands:

 $MRd[7..0] \leftarrow SaturateToSignedByte(MRs[7..0] - MRt (7..0));$

* repeat sub operation for 2nd through 15th bytes *;

MRd[127..120] ← SaturateToSignedByte(MRs[127..120] − MRt[127..120]);

EPSUBSD instruction with 128-bit operands:

MRd[15..0] ← SaturateToSignedDouble-byte(MRs[15..0] − MRt[15..0]);

* repeat sub operation for 2nd and 7th double-bytes *;

 $MRd[127..112] \leftarrow SaturateToSignedDouble-byte(MRs[127..112] - MRt[127..112]);$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPSUBSB 对 128-bit MRs 操作数中 16 个打包的字节数和 128-bit MRt 操作数中 16 个打包的字节数,执行 SIMD 有符号减法,结果存入 MRd 操作数中相应的位置。 EPSUBSD 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 有符号减法,结果存入 MRd 操作数中相应的位置。

EPSUBUSB/D

句型: EPSUBUSB/D MRd, MRs, MRt

EPSUBUSB/D MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	100011

31 30 29 28 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111100		1	1]	MR	.S	dis	sp	A	Rn	1	g	g	N	1Rc	i		M	odı	n				100	001	1	

操作:

EPSUBUSB instruction with 128-bit operands:

 $MRd[7..0] \leftarrow SaturateToUnsignedByte(MRs[7..0] - MRt (7..0));$

* repeat sub operation for 2nd through 15th bytes *;

MRd[127..120] ← SaturateToUnsignedByte(MRs[127..120] − MRt[127..120]);

EPSUBUSD instruction with 128-bit operands:

MRd[15..0] ← SaturateToUnsignedDouble-byte(MRs[15..0] − MRt[15..0]);

* repeat sub operation for 2nd and 7th double-bytes *;

MRd[127..112] ← SaturateToUnsignedDouble-byte(MRs[127..112] − MRt[127..112]);

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: EPSUBUSB 对 128-bit MRs 操作数中 16 个打包的字节数和 128-bit MRt 操作数中 16 个打包的字节数,执行 SIMD 无符号减法,结果存入 MRd 操作数中相应的位置。 EPSUBUSD 对 128-bit MRs 操作数中 8 个打包的 2 字节数和 128-bit MRt 操作数中 8 个打包的 2 字节数,执行 SIMD 无符号减法,结果存入 MRd 操作数中相应的位置。

EPUNPCKHBD/DQ/QO

句型: EPUNPCKHBD/DQ/QO MRd, MRs, MRt

EPUNPCKHBD/DQ/QOMRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	001010

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17	16 1	5 14	13	12	11 1	9	8	7	6	5	4	3	2	1	0
111100	11	MRs	disp	ARm	1	gg	M	ſRd		M	Iodı	m				001	010	0	

操作:

EPUNPCKHBD:

 $MRd[7..0] \leftarrow MRs[71..64];$

 $MRd[15..8] \leftarrow MRt[71..64];$

 $MRd[23..16] \leftarrow MRs[79..72];$

 $MRd[31..24] \leftarrow MRt[79..72];$

 $MRd[39..32] \leftarrow MRs[87..80];$

 $MRd[47..40] \leftarrow MRt[87..80];$

 $MRd[55..48] \leftarrow MRs[95..88];$

 $MRd[63..56] \leftarrow MRt[95..88];$

 $MRd[71..64] \leftarrow MRs[103..96];$

 $MRd[79..72] \leftarrow MRt[103..96];$

 $MRd[87..80] \leftarrow MRs[111..104];$

 $MRd[95..88] \leftarrow MRt[111..104];$

 $MRd[103..96] \leftarrow MRs[119..112];$

 $MRd[111..104] \leftarrow MRt[119..112];$

 $MRd[119..112] \leftarrow MRs[127..120];$

 $MRd[127..120] \leftarrow MRt[127..120];$

EPUNPCKHDQ:

 $MRd[15..0] \leftarrow MRs[79..64];$

 $MRd[31..16] \leftarrow MRt[79..64];$

 $MRd[47..32] \leftarrow MRs[95..80];$

 $MRd[63..48] \leftarrow MRt[95..80];$

 $MRd[79..64] \leftarrow MRs[111..96];$

 $MRd[95..80] \leftarrow MRt[111..96];$

 $MRd[111..96] \leftarrow MRs[127..112];$

 $MRd[127..112] \leftarrow MRt[127..112];$

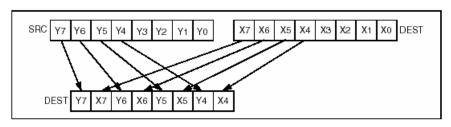
EPUNPCKHQO:

 $MRd[31..0] \leftarrow MRs[95..64]$

 $MRd[63..32] \leftarrow MRt[95..64];$

 $MRd[95..64] \leftarrow MRs[127..96]$

 $MRd[127..96] \leftarrow MRt[127..96];$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 将 128bit MRt 和 MRs 操作数中打包的字节/2 字节/4 字节相交织, 取高 128bit 存

入 MRd 操作数。下图示例了 EPUNPCKHDQ 的操作过程,其它类推。

EPUNPCKLBD/DQ/QO

句型: EPUNPCKLBD/DQ/QO MRd, MRs, MRt

EPUNPCKLBD/DQ/QOMRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	001011

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 1	6 15 14	13 12 11	10 9 8 7 6	5 4	1 3	2	1 0)
111100	11	MRs	disp	ARm	gg	MRd	Modm		00	101	1	

操作:

EPUNPCKLBD:

 $MRd[7..0] \leftarrow MRs[7..0];$

 $MRd[15..8] \leftarrow MRt[7..0];$

 $MRd[23..16] \leftarrow MRs[15..8];$

 $MRd[31..24] \leftarrow MRt[15..8];$

 $MRd[39..32] \leftarrow MRs[23..16];$

 $MRd[47..40] \leftarrow MRt[23..16];$

 $MRd[55..48] \leftarrow MRs[31..24];$

 $MRd[63..56] \leftarrow MRt[31..24];$

 $MRd[71..64] \leftarrow MRs[39..32];$

 $MRd[79..72] \leftarrow MRt[39..32];$

 $MRd[87..80] \leftarrow MRs[47..40];$

 $MRd[95..88] \leftarrow MRt[47..40];$

 $MRd[103..96] \leftarrow MRs[55..48];$

 $MRd[111..104] \leftarrow MRt[55..48];$

 $MRd[119..112] \leftarrow MRs[63..56];$

 $MRd[127..120] \leftarrow MRt[63..56];$

EPUNPCKLDQ:

 $MRd[15..0] \leftarrow MRs15..0];$

 $MRd[31..16] \leftarrow MRt[15..0];$

 $MRd[47..32] \leftarrow MRs[31..16];$

 $MRd[63..48] \leftarrow MRt[31..16];$

 $MRd[79..64] \leftarrow MRs[47..32];$

 $MRd[95..80] \leftarrow MRt[47..32];$

 $MRd[111..96] \leftarrow MRs[63..48];$

 $MRd[127..112] \leftarrow MRt[63..48];$

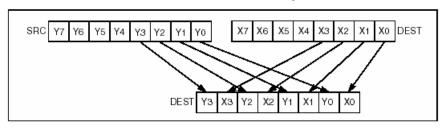
EPUNPCKLQO:

 $MRd[31..0] \leftarrow MRs[31..0]$

 $MRd[63..32] \leftarrow MRt[31..0];$

 $MRd[95..64] \leftarrow MRs[63..32]$

 $MRd[127..96] \leftarrow MRt[63..32];$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 将 128bit MRt 和 MRs 操作数中打包的字节/2 字节/4 字节相交织, 取低 128bit 存

入 MRd 操作数。下图示例了 EPUNPCKLDQ 的操作过程,其它类推。

EPXOR

句型: EPXOR MRd, MRs, MRt

EPXOR *MRd*, *MRs*, *Modm(ARm)*

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111100	01	MRs	00	MRt	gg	MRd	00000	100110

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17	16	15 14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111100	11	MRs	disp	ARm	ı	gg	N	1Rd	ı		M	odı	m				100)11(0	

操作:

EPXOR:

MRd ← MRs XOR MRt;

描述: EPXOR 对 128-bit MRs 操作数和 128-bit MRt 操作数,执行按位逻辑异或运算,结果存入 MRd 操作数。

GETBITS

句型: GETBITS rd, ra, sa 或者

GETBITS rd, ra, rm

指令编码:

31 30 29 28 27 26	25 24	23	22 21	20 19	18 17	16	15 14	13 12 11	10 9 8 7 6	5 4	3	2	1 0)
111111	01	0	留	01	ra	sa	11	rd	sa		00	111	1	

31 30 29 28 27 26	25 24	23	22 21	20 1	.9 18	3 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111111	01	1	留	01		ra	sa	1	1		rd				m					001	111	1	

操作:

GETBITS:

n = sa or ValueOfReg(rn)

IF (n > 32)

THEN n \leftarrow 32;

rd = HeadBitsOfVLDbuffer(n);

ShiftBitsOfVLDbuffer(n);

IF (BitsNumOfVLDbuffer < 33)

THEN

Fill32bitToVLDBuffer (ra) || ValueOfReg(ra) ← ValueOfReg(ra) + 4;

操作数说明: rd: 寄存器 (通用寄存器 0~7)

ra: 寄存器 (辅助寄存器 0~3)

sa: 立即数

rn: 寄存器 (通用寄存器 0~31)

描述: VLD 指令 GetBits 完成的操做是从码流中取出 n 个比特, 并且码流指针也相应的

偏移 n 个比特。其中 rd 是目标寄存器, ra 是地址寄存器, rn 是取比特数寄存器,

sa 是取 bit 立即数。

J

句型: J target

指令编码:

31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
000010	target

操作: $PC_{31\sim28} \parallel \text{target} \parallel 0^2 \rightarrow PC$

操作数说明:

target: 立即数 PC: 指令地址

描述: 26 位目标地址左移 2 位同延迟槽的 PC 地址的高 4 位组合成新的地址,程序无条

件跳转到计算的地址。此指令有一个指令的时延。跳转指令

执行周期: 1 cycle

举例:

J 0x00400000

操作: PC_{31~28} ∥100_0000_{27~0}→ PC

JAL

句型: JAL target

指令编码:

31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0	
000011	target	

操作数说明:

target: 立即数 PC: 指令地址

描述:

26 位目标地址左移 2 位同延迟槽的 PC 地址的高 4 位组合成新的地址,程序无条件跳转到计算的地址。此指令有一个指令的时延。延迟槽后面的指令地址读入寄存器 r31。跳转并连接指令

执行周期: 1 cycle

举例:

JAL 0x00400000

操作: $PC_{31\sim28} \parallel 100_0000_{27\sim0} \rightarrow PC$ 并且 $PC+8 \rightarrow GPR[31]$

JALR

句型: JALR rs

JALR rd, rs

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	rs	00000	rd	00000	001001

操作: GPR[rs]→PC 并且 PC+8→ GPR[31]

 $GPR[rs] \rightarrow PC$ 并且 $PC+8 \rightarrow GPR[rd]$

操作数说明:

rs: 寄存器 (通用寄存器 0~31) rd: 寄存器 (通用寄存器 0~31)

PC: 指令地址

描述:

程序无条件跳转到寄存器 rs 包含的地址,此指令有一个指令的延迟。延迟槽后面的指令地址读入寄存器 rd。跳转并连接指令

执行周期: 1 cycle

举例:

JALR r5

JALR r6, r5

操作: $GPR[r5] \rightarrow PC$ 并且 $PC+8 \rightarrow GPR[31]$ 或者

 $GPR[r5] \rightarrow PC$ 并且 $PC+8 \rightarrow GPR[r6]$

JR

句型: JR rs

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10 9 8 7 6	5 4	3	2	1 0	
000000	rs	00000000000000	(001	000)	

操作: GPR[rs] → PC

操作数说明:

rs: 寄存器 (通用寄存器 0~31)

PC: 指令地址

描述:

程序无条件跳转寄存器 rs 包含的地址。跳转指令

执行周期: 1 cycle

举例:

JR r5

操作: GPR[r5]→PC

LB

句型: LB rt, offset(base) 或者

LB rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
100000	base	rt	offset

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	00	000)			1	111	1				rt				N	Лос	lm		A	ARr	n				Di	sp				

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm),

 $Sign(Byte(mem(Vaddr))) \rightarrow GPR(rt)$

操作数说明:

base: 寄存器 (通用寄存器 0~30) rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	·+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-Arch(uisp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	+ + Akti(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKii(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII ⁺⁺ (disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII++(disp)/8	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(disp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型	操作
LB R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3)$, $Sign(Byte(mem(Vaddr))) \rightarrow GPR(R5)$
LB R5, *AR0(IR0)	$Vaddr = *AR0(IR0), Sign(Byte(mem(Vaddr))) \rightarrow GPR(R5)$

LBU

句型: LBU rt, offset(base) 或者

LBU rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
100100	base	rt	offset

31	30	29	28	3 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		100)10	0			1	111	1				rt				N	Лос	lm		A	Rr	n				Di	sp			

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $zero(Byte(mem(Vaddr))) \rightarrow GPR(rt)$

操作数说明:

base: 寄存器 (通用寄存器 0~30) rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

лике. М. 1/71.1/	(白红红山山) 6671.8年	M. 1/51.4	白地址址的
Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	AKII(uisp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-/ Hell(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	- Aixii(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(uisp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	Aixii + (disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	Aidi(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII + (ulsp)/6	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn
	· · · · · · · · · · · · · · · · · · ·	·	·

执行周期: 1 cycle

句型	操作
LBU R5, 0840h(R3)	Vaddr = $sign(0840h) + GPR(R3)$, $0(Byte(mem(Vaddr))) \rightarrow GPR(R5)$
LBU R5, *AR0(IR0)	$Vaddr = *AR0(IR0), \ 0(Byte(mem(Vaddr))) \rightarrow GPR(R5)$

LH

句型: LH rt, offset(base) 或者

LH rt, mod(ARm)

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		100	000	1			l	bas	e				rt										of	fse	t						

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	1	00	001				1	111	1				rt				N	Лос	lm		A	ARr	n				Di	sp				

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $Sign(Byte(mem(Vaddr))) \rightarrow GPR(rt)$

操作数说明:

base: 寄存器 (通用寄存器 0~30) rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dian)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKil(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	+ + Akti(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII ⁺ (disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	Archi(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII++(disp)/8	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(disp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型	操作
LH R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), Sign(Byte(mem(Vaddr))) \rightarrow RP(R5)$
LH R5, *AR0(IR0)	$Vaddr = *AR0(IR0), Sign(Byte(mem(Vaddr))) \rightarrow RP(R5)$

LHU

句型: LHU rt, offset(base) 或者

LHU rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6	5 5 4 3 2 1 0					
100101	100101 base		offset						
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6	5 5 4 3 2 1 0					
100101 11111		rt	Modm ARm Disp						

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $zero(Byte(mem(Vaddr))) \rightarrow GPR(rt)$

操作数说明:

base: 寄存器 (通用寄存器 0~30) rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	· +AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-Ardi(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	++AKII(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII (uisp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(uisp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII (uisp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	Aidi(disp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型	操作
LHU R5, 0840h(R3)	Vaddr = $sign(0840h) + GPR(R3)$, $0(Byte(mem(Vaddr))) \rightarrow GPR(R5)$
LHU R5, *AR0(IR0)	$Vaddr = *AR0(IR0), \ 0(Byte(mem(Vaddr))) \rightarrow GPR(R5)$

LUI

句型: LUI rt, Imm 或者 LUI dst, @Imm 或者

LUI dst, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
001111	00000	rt	Imm

31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	001	111				1	111	1		0	0		dst									Im	ım							

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		001	11	1			1	111	1		0	1		dst	t		N	Лос	lm		A	Rr	n				D	isp			

操作:

 $\begin{array}{ll} \operatorname{Imm} \mid \operatorname{zero}(0^{16}) \to \operatorname{GPR}(\operatorname{rt}) & \quad \text{或者} \\ \operatorname{mem}(\operatorname{Imm}) \left[15:0\right] \mid \operatorname{zero}(0^{16}) \to \operatorname{GPR}(\operatorname{dst}) & \quad \text{或者} \end{array}$

modm(ARm) [15:0] | $zero(0^{16}) \rightarrow GPR(dst)$

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) rt: 目标寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) Dst: 目的寄存器 (通用寄存器 0~7)

G: 寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dian)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	++AKii(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII (uisp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII (uisp)/0	01110	*ARn++(IR1)%
10111	* A Dn (dian)0/	00111	*ARn(IR0)%
10111	*ARn(disp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

1 1 2 4 4	
句型	操作
LUI R5, 0840h	$0840h \mid zero(0^{16}) \rightarrow GPR(R5)$
LUI R5, @0840h	$mem(0840h) [15:0] zero(0^{16}) \rightarrow GPR(R5)$
LUI R5, *AR2++(40h)	$Mem(AR2) [15:0] zero(0^{16}) \rightarrow GPR(R5)$

LW

句型: LW rt, offset(base) 或者

LW rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8	7 6 5 4 3 2 1 0
100011	base	rt		of	ffset
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8	7 6 5 4 3 2 1 0
100011	11111	rt	Modn	ARm	Disp

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $mem(Vaddr) \rightarrow GPR(rt)$

操作数说明:

base: 寄存器 (通用寄存器 0~30) rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	* A D m (diam)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	·-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	AKII(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII++(uisp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII++(uisp)/6	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型	操作
LW R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), mem(Vaddr) \rightarrow GPR(R5)$
LW R5, *AR0(IR0)	$Vaddr = *AR0(IR0), mem(Vaddr) \rightarrow GPR(R5)$

LWL

句型: LWL rt, offset(base) 或者

LWL rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8	7 6 5 4 3 2 1 0
100010	base	rt		of	fset
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8	7 6 5 4 3 2 1 0
100010	11111	rt	Modm	ARm	Disp

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), Left (mem(Vaddr)) \rightarrow GPR(rt)

操作数说明:

base: 寄存器 (通用寄存器 0~30) rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKii(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-Akti(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	AKii(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	Akii (uisp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	Akii(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	Aldi (disp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	Aitii(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型		操作
LWL	R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), Left(mem(Vaddr)) \rightarrow GPR(R5)$
LWL	R5,*AR0(IR0)	$Vaddr = *AR0(IR0), Left(mem(Vaddr)) \rightarrow GPR(R5)$

LW_LW

句型: LW_LW dst1, dst2, mod(ARm), mod(ARn)

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	011	l		1	1		000)]	Mo	dm]	Dst	2	Mc	dn	ı I	Ost	1	0		M	odr	1	A	Rr	n	4	AR	n

操作: $modm(ARm) \rightarrow GRP(dst1)$ | $modn(ARn) \rightarrow GPR(dst2)$

操作数说明:

ARm:间接寻址(辅助寄存器 0~7)ARn:间接寻址(辅助寄存器 0~7)dst1:寄存器 (通用寄存器 0~7)dst2:寄存器 (通用寄存器 24~31)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:

LW_LW R5, R3, *AR0--(IR0), *+AR7(IR1)

操作: $mem(*AR0--(IR0)) \rightarrow GRP(R5)$,

 $mem(*+AR7(IR1)) \rightarrow GRP(R3)$

LWR

句型: LWR rt, offset(base) 或者

LWR rt, mod(ARm)

指令编码:

	31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8	7 6 5 4 3 2 1 0								
	100110	base	rt	offset										
[31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8	7 6 5 4 3 2 1 0								
	100110	100110 11111		Modm	ARm	Disp								

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), right (mem(Vaddr)) \rightarrow GPR(rt)

操作数说明:

base: 寄存器 (通用寄存器 0~30) rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(uisp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	+ + Akti(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII ⁺⁺ (disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII + (disp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(disp)/6	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型		操作
LWR	R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3)$, $Right(mem(Vaddr)) \rightarrow GPR(R5)$
LWR	R5, *AR0(IR0)	$Vaddr = *AR0(IR0), Right(mem(Vaddr)) \rightarrow GPR(R5)$

LW_SW

句型: LW_SW dst, mod(ARn), mod(ARm), src2

指令编码:

31 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	111	011			1	0		000)	Мо	dm		Src	2	Mo	odn	1	Dst	t	0		M	odı	1	A	ARı	n		AR	n

操作: $modm(ARm) \rightarrow GPR(dst)$ | $GPR(src2) \rightarrow modn(ARn)$

操作数说明:

Src2:寄存器 (通用寄存器 0~7)ARm:间接寻址 (辅助寄存器 0~7)ARn:间接寻址 (辅助寄存器 0~7)Dst:寄存器 (通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

> LW_SW R0, *+AR7(IR1), *AR0--(IR0), R3 操作: mem(*AR0--(IR0)) → GPR(R0),

> > $GPR(R3) \rightarrow mem(*+AR7(IR1))$

MAC

句型: MAC srcA, srcB

指令编码:

31 30 29 28	3 27 26	25 2	24	23 2	2 21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
01101	.1	10		Sr	c1]	P	5	Src2		0		Mo	dm	ı	0		M	odı	1	A	Rr	n		AR	n

操作: $srcA * srcB + MR0 \rightarrow MR0\{HI, LO\}$

操作数说明:

srcA、srcB: 必须两个为寄存器(通用寄存器 R0~R7,表示为 src1 和 src2),或为两个为间接寻址(辅助寄存器 0~7,表示为 Arm 和 ARn)

src1: 寄存器 (通用寄存器 0~7) src2: 寄存器 (通用寄存器 0~7) ARm: 间接寻址 (辅助寄存器 0~7) ARn: 间接寻址 (辅助寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

P(2bit)	描述
00	Modm(ARm) * modn(ARn), $src1 - src2$
01	Modm(ARm)* src1, modn(ARn)- src2
10	Src1 * src2, Modm(ARm)-modn(ARn)
11	Modm(ARm)* src1, src2 -modn(ARn)

执行周期: 4 cycles

举例:

MAC *AR0--(IR0), *+AR7(IR1)

操作: mem(*AR0--(IR0)) * mem(*AR7(IR1) + MR0 → MR0{HI,LO},

MFC0

句型: MFC0 rt, rd

指令编码:

31	26	25	21	20	16	15	11	10	0
010000		00000		rt		rd		000_	0000_0000

操作: CPR(rd) → GPR(rt)

操作数说明:

rt: 寄存器 (通用寄存器 0~31)

rd: 寄存器 (系统寄存器 0~15)

描述: CP0 的寄存器 rd 的内容装入通用寄存器 rt 中。

MFHI

句型: MFHI rd

指令编码:

31	26	25	16	15	11	10	6	5	0
000000		00_0000	_0000		rd	00000		010000	

操作: MR0{HI}→GPR(rd)

操作数说明:

rd: 寄存器 (通用寄存器 0~31)

MR0: MDS 寄存器 0

描述: MDS 寄存器 MR0 中 HI 的内容装入通用寄存器 rd 中。

MFLO

句型: MFLO rd

指令编码:

31	26	25	16	15	11	10	6	5		0
	000000	00_0	0000_0000		rd		00000		010010	

操作: MR0{LO}→ GPR(rd)

操作数说明: rd: 寄存器 (通用寄存器 0~31)

MR0: MDS 寄存器 0

描述: MDS 寄存器 MR0 中 LO 的内容装入通用寄存器 rd 中。

MULT

MULI										
句型:	MU	LT	rs,	rt				或者		
• —	MU	LT	*+A	Rm(dis	sp1), *+	-ARn(d	lisp2)	或者		
	MU	LT		(ARm)	• /		• /	或者		
	MU	LT	*+A	Rm(dis	sp),Imr	n		或者		
	MU	LT	rs,	mod(A	Rm)			或者		
	MU	LT	rs,	*+ARr	n(disp)			或者		
	MU	LT	mod	(ARm)	, mod(A	ARn)				
指令编码	}:									
31 30 29	28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
000	0000		rs		rt	0	0000	00000		011000
212020	202726	2524		2010	10151		101011	10005	_	
31 30 29	28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
000	0000	Disp1	ARm	Disp1	ARn	00	000	Disp2	1	011000
				1 1						
31 30 29	28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
000	0000	00	ARm		rt	01	000	Modm	1	011000
	, ,					, ,				
31 30 29	28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
000	0000	01	ARm	i	imm	01	000	Disp	1	011000
				1 1		1 1				
31 30 29	28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
000	0000		rs	00	ARm	10	000	Modm	1	011000
31 30 29	28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
000	0000		rs	01	ARm	10	000	Disp	1	011000
21/20/20	28 27 26	25 24	22 22 21	20 10	19 17 16	15 14	12 12 11	10 0 9 7	_	5 4 3 2 1 0
31 30 29	128 27 20	23 24	23 22 21	20 19	18 1/ 10	0 13 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
000	0000	Modn	ı ARm	Modm	ARn	11	000	Modn	1	011000
操作:	GPF	R(Rs) *	GPR(rt)	→ MI	R0{HI,L0	O}				或者
	Mer	n(*+A	Rm(disp	1)) * m	nem(*+A	Rn(dis	p2)) → M	R0{HI,LO}		或者
		`	·	` ′	MR0{H					或者
		•					O{HI,LO}			或者
					MR0{H	-	(TTT T C)			或者
	GPF	K(Ks) *	f mem(*-	+ARm($(disp)) \rightarrow$	MR0{	(HI,LO)			或者

 $Modm(ARm) * modn(ARn) \rightarrow MR0\{HI,LO\}$

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2
0	00	*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01	寄存器	*+ARn(disp)寻址
11		间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 3 cycles

举例:

句型	操作
MULT R5, R3, R7	$GPR(R3) * GPR(R7) \rightarrow GPR(R5)$
MULT R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) * mem(*+AR2(8h)) \rightarrow GPR(R5)$
MULT R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1))*GPR(R3) \rightarrow GPR(R5)$
MULT R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) * sign(08h) \rightarrow GPR(R5)$
MULT R5, R3, *AR2++(IR1)	$GPR(R3) * Mem(*AR2++(IR1)) \rightarrow GPR(R5)$
MULT R5, R3, *+AR1(1h)	$GPR(R3) * mem(*+AR1(1h)) \rightarrow GPR(R5)$
MULT R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) * Mem(*AR2++(IR1)) \rightarrow$
WIOLI K5, AKITT(IKU), AKZTT(IKI)	GPR(R5)

MULTU

MOLIO																						
句型:	MU	LTU		rs, ı	t								或	者								
	MU	LTU		*+A]	Rm(d	isp1	l), [;]	*+,	ARn(d	lisp	2)		或	或者								
	MU	LTU		mode	(ARm	1),	rt						或者									
	MU	LTU		*+A]	Rm(d	isp)	, Ir	nm	ı				或者									
	MU	LTU		rs, 1	nod(A	A Rr	n)						或者									
	MU	LTU		rs, *+ARm(disp)																		
	MU	LTU		mod(ARm), mod(ARn)																		
指令编码:																						
31 30 29 28	27 26	25 24	23	22 21	20 19	18	3 17	16	15 14	13	12 11	10	9	8 7	6	5	4	3	2	1	0	
00000	0		rs			rt			0	000	00		(00000				01	1001	1		
						<u> </u>	1 1								1	1						
31 30 29 28	27 26	25 24	23	22 21	20 19	18	18 17 16 1		15 14	14 13 1		10	9	8 7	6	5	4	3	2	1	0	
00000	0	Disp	l A	Rm	Disp1 ARn (00		000		Di	sp2			011	001				
			<u> </u>							<u> </u>		<u> </u>			<u> </u>	<u> </u>					_	
31 30 29 28	27 26	25 24	23	22 21	20 19	18	3 17	16	15 14	13	12 11	10	9	8 7	6	5	4	3	2	1	0	
00000	0	00		\Rm		rt	rt		01		000		M	odm	1			011	000)		
21 20 20 29	27/26	25 24	22	22 21	20 10	110	17	1.6	15 14	12	12 11	10	0	8 7	6	_	4	3	2	1 /		
31 30 29 28	2/ 20	23 24 	23	22 21	20 15	110	9 1 /	10	13 14	13	12 11	10	9	8 /	6	5	4	3	2	1	0_	
00000	0	01	A	Rm		im	m		01		000		D	isp	1			011	001	l		
31 30 29 28	27 26	25 24	23	22 21	20 19	18	17	16	15 14	13	12 11	10	9	8 7	6	5	4	3	2	1	0	
00000	0		rs		00	1	ARn	1	10		000		Mo	odm	1			011	001	l		
					1 1																	
31 30 29 28	27 26	25 24	23	22 21	20 19	18	17	16	15 14	13	12 11	10	9	8 7	6	5	4	3	2	1	0	
00000		rs		01	1	ARn	ı	10		000		D	isp	1			011	001	l			
•		•							•	•		•				•						

000000 Modm ARm Modm ARn 11 000 Modn 1 011001	31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0
	000000	Modn	ı ARm	Modm	ARn	11	000	Modn	1	011001

操作: $GPR(Rs)*GPR(rt) \rightarrow MR0\{HI,LO\}$ 或者 $Mem(*+ARm(disp1))*mem(*+ARn(disp2)) \rightarrow MR0\{HI,LO\}$ 或者 $mod(ARm)*GPR(Rt) \rightarrow MR0\{HI,LO\}$ 或者 $Mem(*+ARm(disp))*sign(Imm) \rightarrow MR0\{HI,LO\}$ 或者 $GPR(Rs)*mod(ARm) \rightarrow MR0\{HI,LO\}$ 或者 $GPR(Rs)*mem(*+ARm(disp)) \rightarrow MR0\{HI,LO\}$ 或者 $Mem(*+ARm(disp)) \rightarrow MR0\{HI,LO\}$ 或者 $Mem(*+ARm(disp)) \rightarrow MR0\{HI,LO\}$ 或者 $Mem(*+ARm(disp)) \rightarrow MR0\{HI,LO\}$

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2
0	0	*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01	寄存器	*+ARn(disp)寻址
11		间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

MULT 和 MULTU 的区别在于前者产生 Overflow 的异常,而后者不产生任何异常。

执行周期: 3 cycles

举例:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
句型	操作
MULTU R5, R3, R7	$GPR(R3) * GPR(R7) \rightarrow GPR(R5)$
MULTU R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) * mem(*+AR2(8h)) \rightarrow GPR(R5)$
MULTU R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1))*GPR(R3) \rightarrow GPR(R5)$
MULTU R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) * sign(08h) \rightarrow GPR(R5)$
MULTU R5, R3, *AR2++(IR1)	$GPR(R3) * Mem(*AR2++(IR1)) \rightarrow GPR(R5)$
MULTU R5, R3, *+AR1(1h)	$GPR(R3) * mem(*+AR1(1h)) \rightarrow GPR(R5)$
MULTU R5 , *AR1++(IR0) ,	$Mem(*AR1++(IR0)) * Mem(*AR2++(IR1)) \rightarrow$
*AR2++(IR1)	GPR(R5)

MULT_ADD

句型: MULT_ADD D, srcA, srcB, srcC, srcD

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
011011		0	00	!	Src	1]	P	5	Src2	2	0		Mo	odn	1	D		M	odı	n	A	ARr	n	4	AR	n				

操作: $srcA * srcB \rightarrow \{HI, LO\}$ $\parallel srcC + srcD \rightarrow GPR(D)$ 操作数说明:

srcA、srcB、srcC 和 srcD: 必须两个为寄存器 (通用寄存器 R0~R7, 表示为 src1 和 src2) ,另两个为间接寻址(辅助寄存器 0~7, 表示为 Arm 和 ARn)

 src1:
 寄存器 (通用寄存器 0~7)

 src2:
 寄存器 (通用寄存器 0~7)

 ARm:
 间接寻址 (辅助寄存器 0~7)

 ARn:
 间接寻址 (辅助寄存器 0~7)

 D:
 寄存器 (0 为 R1, 1 为 R2)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

P(2bit)	描述
00	Modm(ARm) * modn(ARn), $src1 + src2$
01	Modm(ARm) * src1, modn(ARn) + src2
10	Src1 * src2, Modm(ARm) + modn(ARn)
11	Modm(ARm) * src1, src2 + modn(ARn)

执行周期: 3 cycles 举例:

MULT_ADD R3, *AR0--(IR0), *+AR7(IR1), R5, R7

操作: mem(*AR0--(IR0)) * mem(*+AR7(IR1)) → {HI,LO},

 $GPR(R5) + GPR(R7) \rightarrow GPR(R3)$

MULT_SUB

句型: MULT_SUB D, srcA, srcB, srcC, srcD

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15	14 13	12 11	10	9	8 7	6	5	4	3	2	1	0
011011	01	Src1	P	Src2	0	Мо	odm	D		Mod	n	A	ARn	n	1	AR	n

操作: $\operatorname{srcA} * \operatorname{srcB} \rightarrow \{\operatorname{HI}, \operatorname{LO}\} \quad \| \quad \operatorname{srcC} - \operatorname{srcD} \rightarrow \operatorname{GPR}(\operatorname{D})$

操作数说明:

srcA、srcB、srcC 和 srcD: 必须两个为寄存器 (通用寄存器 R0~R7, 表示为 src1 和 src2) ,另两个为间接寻址(辅助寄存器 0~7, 表示为 Arm 和 ARn)

src1:寄存器(通用寄存器 0~7)src2:寄存器(通用寄存器 0~7)ARm:间接寻址(辅助寄存器 0~7)ARn:间接寻址(辅助寄存器 0~7)D:寄存器(0 为 R1, 1 为 R2)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

P(2bit)	描述
00	Modm(ARm) * modn(ARn), $src1 - src2$
01	Modm(ARm)* src1, modn(ARn)- src2
10	Src1 * src2, Modm(ARm)-modn(ARn)
11	Modm(ARm)* src1, src2 -modn(ARn)

执行周期: 3 cycles 举例:

MULT_SUB R0, R3, *AR0--(IR0), R5, *+AR7(IR1), R7 操作: mem(*AR0--(IR0)) * GPR(R5) → {HI,LO},

 $mem(*+AR7(IR1)) - GPR(R7) \rightarrow GPR(R3)$

MULT_SW

句型: MULT_SW dst, mod(ARn), mod(ARm), src1, src2 指令编码:

313	0 29 28 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	110100		1	0	5	Src1	1]	Мо	dm		Src	2	Μc	dn	1	Dst	t	1		M	odı	1	A	ARı	n		AR	n

操作: modm(ARm) * GPR(src1) → GPR(dst) || GPR(src2) → modn(ARn) 操作数说明:

> src1: 寄存器 (通用寄存器 0~7) Src2: 寄存器 (通用寄存器 0~7) ARm: 间接寻址 (辅助寄存器 0~7) ARn: 间接寻址 (辅助寄存器 0~7) Dst: 寄存器 (通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 3 cycles

举例:

MULT_SW *+AR7(IR1), *AR0--(IR0), R5, R3

操作: mem(*AR0--(IR0)) * GPR(R5) → MR0(Hi,LO),

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

MTC0

句型: MTC0 rt, rd

指令编码:

31	26	25	21	20	16	15	11	10	0
010000		00100		rt		rd		000_	_0000_0000

操作: GPR(rt) → rd

操作数说明:

rt: 寄存器 (通用寄存器 0~31)

rd: 寄存器 (系统寄存器 0~15)

描述: 通用寄存器 rt 的内容装入 CP0 的寄存器 rd 中。

MTHI

句型: MTHI rs

指令编码:

31	26	25	21	20	6	5	0
000000		rs		000_0	000_0000_0000		010001

操作: GPR(rs) → MR0{HI}

操作数说明: rs: 寄存器 (通用寄存器 0~31)

MR0: MDS 寄存器 0

描述:通用寄存器 rd 的内容装入 MDS 寄存器 MR0 中 HI 寄存器。

MTLO

句型: MTLO rd

指令编码:

31	26	25	21	20	6	5	0
(000000		rs		000_0000_0000_0000		010011

操作: **GPR**(rs) → MR0{HI}

操作数说明: rd: 寄存器 (通用寄存器 0~31)

MR0: MDS 寄存器 0

描述:通用寄存器 rd 的内容装入 MDS 寄存器 MR0 中 LO 寄存器。

NOR

句型:	NOR	rd, rs, rt	或者
	NOR	dst, *+ARm(disp1), *+ARn(disp2)	或者
	NOR	dst, mod(ARm), rt	或者
	NOR	dst, *+ARm(disp), Imm	或者
	NOR	dst, rs, mod(ARm)	或者
	NOR	dst, rs, *+ARm(disp)	或者
	NOR	dst, mod(ARm), mod(ARn)	

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000		rs		rt		rd	00000	100111
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2	1 100111
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	5 5 4 3 2 1 0
000000	00	ARm		rt	01	Dst	Modm	1 100111
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0
000000	01	ARm	i	mm	01	Dst	Disp	1 100111
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0
000000		rs	00	ARm	10	Dst	Modm	1 100111
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	5 5 4 3 2 1 0
000000		rs	01	ARm	10	Dst	Disp	1 100111
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	5 5 4 3 2 1 0
000000	Modn	ı ARm	Modm	ARn	11	Dst	Modn	1 100111

操作:	$GPR(Rs)$ nor $GPR(rt) \rightarrow GPR(rd)$	或者
	$Mem(*+ARm(disp1))$ nor $mem(*+ARn(disp2)) \rightarrow GPR(dst)$	或者
	$mod(ARm)$ nor $GPR(Rt) \rightarrow GPR(dst)$	或者
	$Mem(*+ARm(disp))$ nor $sign(Imm) \rightarrow GPR(dst)$	或者
	$GPR(Rs)$ nor $mod(ARm) \rightarrow GPR(dst)$	或者
	$GPR(Rs)$ nor mem(*+ $ARm(disp)$) \rightarrow $GPR(dst)$	或者

Modm(ARm) nor $modn(ARn) \rightarrow GPR(dst)$

操作数说明:

寄存器 (通用寄存器 0~31) rs: 寄存器 (通用寄存器 0~31) rt: rd: 寄存器 (通用寄存器 0~31) 间接寻址 (辅助寄存器 0~7) ARm: ARn: 间接寻址(辅助寄存器0~7) 寄存器 (通用寄存器 0~7) Dst:

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2
0	00	*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01	寄存器	*+ARn(disp)寻址
1	1	间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

举例:	
	_

句型	操作
NOR R5, R3, R7	$GPR(R3)$ nor $GPR(R7) \rightarrow GPR(R5)$
NOR R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) \text{ nor mem}(*+AR2(8h)) \rightarrow GPR(R5)$
NOR R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) \text{ nor } GPR(R3) \rightarrow GPR(R5)$
NOR R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) \text{ nor sign}(08h) \rightarrow GPR(R5)$
NOR R5, R3, *AR2++(IR1)	$GPR(R3)$ nor $Mem(*AR2++(IR1)) \rightarrow GPR(R5)$
NOR R5, R3, *+AR1(1h)	$GPR(R3)$ nor mem(*+AR1(1h)) \rightarrow $GPR(R5)$
NOR R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) nor Mem(*AR2++(IR1)) \rightarrow$
NOR R3, 'AR1++(IR0), "AR2++(IR1)	GPR(R5)

OR

句型:	OR	rd, rs, rt	或者
	OR	dst, *+ARm(disp1), *+ARn(disp2)	或者
	OR	dst, mod(ARm), rt	或者
	OR	dst, *+ARm(disp), Imm	或者
	OR	dst, rs, mod(ARm)	或者
	OR	dst, rs, *+ARm(disp)	或者
	OR	dst, mod(ARm), mod(ARn)	
指令编码:			

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0				
000000		rs		rt		rd	00000	100101				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0				
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2	100101				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0				
000000	00	ARm		rt	01	Dst	Modm 1	100101				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0				
000000	01	ARm	j	imm	01	Dst	Disp	100101				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0				
000000		rs	00	ARm	10	Dst	Modm 1	100101				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0				
000000		rs	01	ARm	10	Dst	Disp	100101				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 5 4 3 2 1 0				
000000	Modn	ı ARm	Modm	ARn	11	Dst	Modn 1	100101				

操作:	$GPR(Rs)$ or $GPR(rt) \rightarrow GPR(rd)$	或者
	$Mem(*+ARm(disp1))$ or $mem(*+ARn(disp2)) \rightarrow GPR(dst)$	或者
	$mod(ARm)$ or $GPR(Rt) \rightarrow GPR(dst)$	或者
	$Mem(*+ARm(disp))$ or $sign(Imm) \rightarrow GPR(dst)$	或者
	$GPR(Rs)$ or $mod(ARm) \rightarrow GPR(dst$	或者
	$GPR(Rs)$ or $mem(*+ARm(disp)) \rightarrow GPR(dst)$	或者
	$M_0 d_{m}(AD_m)$ or $m_0 d_n(AD_m) \rightarrow CDD(d_{at})$	

Modm(ARm) or $modn(ARn) \rightarrow GPR(dst)$

操作数说明:

寄存器 (通用寄存器 0~31) rs: 寄存器 (通用寄存器 0~31) rt: rd: 寄存器 (通用寄存器 0~31) 间接寻址 (辅助寄存器 0~7) ARm: ARn: 间接寻址(辅助寄存器0~7) 寄存器 (通用寄存器 0~7) Dst:

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2
0	00	*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01	寄存器	*+ARn(disp)寻址
11		间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:

1 2 4 -						
句型	操作					
OR R5, R3, R7	$GPR(R3)$ or $GPR(R7) \rightarrow GPR(R5)$					
OR R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) \text{ or } mem(*+AR2(8h)) \rightarrow GPR(R5)$					
OR R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) \text{ or } GPR(R3) \rightarrow GPR(R5)$					
OR R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) \text{ or } sign(08h) \rightarrow GPR(R5)$					
OR R5, R3, *AR2++(IR1)	$GPR(R3)$ or $Mem(*AR2++(IR1)) \rightarrow GPR(R5)$					
OR R5, R3, *+AR1(1h)	$GPR(R3)$ or mem(*+AR1(1h)) \rightarrow $GPR(R5)$					
OD D5 *AD1++(ID0) *AD2++(ID1)	$Mem(*AR1++(IR0)) or Mem(*AR2++(IR1)) \rightarrow$					
OR R5, *AR1++(IR0), *AR2++(IR1)	GPR(R5)					

ORI

句型: ORI rt, rs, Imm 或者

ORI dst, @Imm 或者

ORI dst, mod(ARm)

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
001101						rs					rt										Iı	nm	-								
31 30 29 28 27 26			26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	001101				11111				00 dst					Imm																	
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
001101			1	111	11		0	1		ds	t		N	100	lm		Α	Rı	n				D	isp							

操作:

GPR(Rs) or $zero(Imm) \rightarrow GPR(rt)$ 或者 GPR(dst) or $mem(Imm) \rightarrow GPR(dst)$ 或者 GPR(dst) or $modm(ARm) \rightarrow GPR(dst)$

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) rt: 目标寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) Dst: 目的寄存器 (通用寄存器 0~7)

G: 寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	* A D m (diam)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	++AKII(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII (uisp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle 举例:

	句型	操作
ORI	R5, R3, 0840h	$GPR(R3)$ or $zero(0840h) \rightarrow GPR(R5)$
ORI	R5, @0840h	$GPR(R5)$ or mem(0840h) \rightarrow $GPR(R5)$
ORI	R5, *AR2++(40h)	$GPR(R5)$ or mem(AR2) \rightarrow $GPR(R5)$, AR2=AR2+40h

OR_SW

句型: OR_SW dst, mod(ARn), mod(ARm), src1, src2

指令编码:

31 30 29 28	27 2	6 25	5 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
110100)	0	1		Src 1	1	Mo	dm		Src	2	Μc	dn	1	Dst	t	1		M	odr	1	A	ARı	n		AR	n

操作: $modm(ARm) OR GPR(src1) \rightarrow GPR(dst) \parallel GPR(src2) \rightarrow modn(ARn)$

操作数说明:

src1:寄存器(通用寄存器 0~7)ARm:间接寻址 (辅助寄存器 0~7)Dst:寄存器 (通用寄存器 0~7)Src2:寄存器 (通用寄存器 0~7)ARn:间接寻址 (辅助寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

> OR_SW R2, *+AR7(IR1), *AR0--(IR0), R5, R3 操作: mem(*AR0--(IR0)) or GPR(R5) → GPR(R2),

> > $GPR(R3) \rightarrow mem(*+AR7(IR1))$

PACKSSDB/QD

句型: PACKSSDB/QD MRd, MRs, MRt

> PACKSSDB/QD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	010100

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111111	11	MRs	disp	ARm	gg	MRd	Modm	010100	

操作:

PACKSSDB:

MRd[7..0] ← SaturateSignedDouble-byteToSignedByte MRs[15..0];

MRd[15..8] ← SaturateSignedDouble-byteToSignedByte MRs[31..16];

MRd[23..16] ← SaturateSignedDouble-byteToSignedByte MRs[47..32];

 $MRd[31..24] \leftarrow SaturateSignedDouble-byteToSignedByte MRs[63..48];$

MRd[39..32] ←SaturateSignedDouble-byteToSignedByte MRt[15..0];

MRd[47..40] ← SaturateSignedDouble-byteToSignedByte MRt[31..16];

MRd[55..48] ←SaturateSignedDouble-byteToSignedByte MRt[47..32];

 $MRd[63..56] \leftarrow SaturateSignedDouble-byteToSignedByte MRt[63..48];$

PACKSSQD:

 $MRd[15..0] \leftarrow SaturateSignedQuad-byteToSignedDouble-byte MRs[31..0];$

 $MRd[31..16] \leftarrow SaturateSignedQuad-byteToSignedDouble-byte MRs[63..32];$

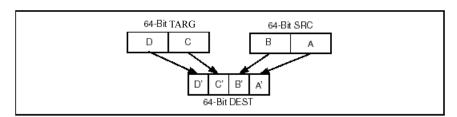
MRd[47..32] ← SaturateSignedQuad-byteToSignedDouble-byte MRt[31..0];

MRd[63..48] ← SaturateSignedQuad-byteToSignedDouble-byte MRt[63..32];

操作数说明: MRs: MDS 寄存器

ARm:

MRt: MDS 寄存器 MRd: MDS 寄存器


间接寻址辅助寄存器 Disp: 地址偏移立即数

描述:

PACKSSDB 将 64-bit MRs 操作数中打包的 4 个有符号 2 字节数和 64-bit MRt 操 作数中打包的4个有符号2字节数转换为8个有符号字节数,采用有符号饱和法 处理溢出,结果存入 MRd 操作数。

PACKSSQD 将 64-bit MRs 操作数中打包的 2 个有符号 4 字节数和 64-bit MRt 操 作数中打包的2个有符号4字节数转换为4个有符号2字节数,采用有符号饱和 法处理溢出,结果存入 MRd 操作数。

下图示例了 PACKSSQD 的操作过程,其它类推。

PACKUSDB/QD

句型: PACKUSDB/QD MRd, MRs, MRt

PACKUSDB/QD MRd, MRs, Modm(ARm)

指令编码:

3	31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
	111111	01	MRs	00	MRt	gg	MRd	00000	010101	

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	010101

操作:

PACKUSDB:

 $MRd[7..0] \leftarrow SaturateSignedDouble-byteToUnsignedByte MRs[15..0];$

MRd[15..8] ←SaturateSignedDouble-byteToUnsignedByte MRs[31..16];

MRd[23..16] ← SaturateSignedDouble-byteToUnsignedByte MRs[47..32];

MRd[31..24] ← SaturateSignedDouble-byteToUnsignedByte MRs[63..48];

MRd[39..32]

SaturateSignedDouble-byteToUnsignedByte MRt[15..0];

MRd[47..40] ← SaturateSignedDouble-byteToUnsignedByte MRt[31..16];

MRd[55..48] ←SaturateSignedDouble-byteToUnsignedByte MRt[47..32];

 $MRd[63..56] \leftarrow SaturateSignedDouble-byteToUnsignedByte MRt[63..48];$

PACKUSQD:

 $MRd[15..0] \leftarrow SaturateSignedQuad-byteToUnsignedDouble-byte MRs[31..0];$

MRd[31..16]

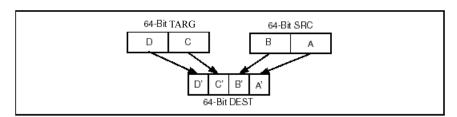
SaturateSignedQuad-byteToUnsignedDouble-byte MRs[63..32];

MRd[47..32] ← SaturateSignedQuad-byteToUnsignedDouble-byte MRt[31..0];

MRd[63..48] ← SaturateSignedQuad-byteToUnsignedDouble-byte MRt[63..32];

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器


ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述:

PACKUSDB 将 64-bit MRs 操作数中打包的 4 个有符号 2 字节数和 64-bit MRt 操作数中打包的 4 个有符号 2 字节数转换为 8 个有符号字节数,采用无符号饱和法处理溢出,结果存入 MRd 操作数。

PACKUSQD 将 64-bit MRs 操作数中打包的 2 个有符号 4 字节数和 64-bit MRt 操作数中打包的 2 个有符号 4 字节数转换为 4 个有符号 2 字节数,采用无符号饱和法处理溢出,结果存入 MRd 操作数。

下图示例了 PACKUSQD 的操作过程,其它类推。

PADDB/D/Q

句型: PADDB/D/Q MRd, MRs, MRt

PADDB/D/Q MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4	3	2	1	0
111111	01	MRs	00	MRt	gg	MRd	00000		101	100)	

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111111	11	MRs	disp	ARm	gg	MRd	Modm	101100	

操作:

PADDB instruction with 64-bit operands:

 $MRd[7..0] \leftarrow MRs[7..0] + MRt[7..0];$

* repeat add operation for 2nd through 7th byte *;

 $MRd[63..56] \leftarrow MRs[63..56] + MRt[63..56];$

PADDD instruction with 64-bit operands:

 $MRd[15..0] \leftarrow MRs[15..0] + MRt[15..0];$

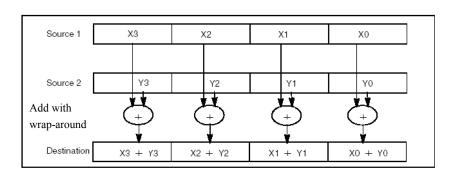
* repeat add operation for 2nd and 3th double-byte *;

 $MRd[63..48] \leftarrow MRs[63..48] + MRt[63..48];$

PADDQ instruction with 64-bit operands:

 $MRd[31..0] \leftarrow MRs[31..0] + MRt[31..0];$

 $MRd[63..32] \leftarrow MRs[63..32] + MRt[63..32];$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: PADDB/D/Q 对 64-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 64-bit MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 加法,结果存入 MRd 操作数中,溢出被忽略。下图示例 PADDD 的操作过程,其它类推。

PADDSB/D

句型: PADDSB/D MRd, MRs, MRt

PADDSB/D MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	100000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	111			1	1	I	MR	S	dis	sp	A	Rn	n	g	g	N	1Rc	ł		M	odı	m				100	000	0	

操作:

PADDSB instruction with 64-bit operands:

 $MRd[7..0] \leftarrow SaturateToSignedByte(MRs[7..0] + MRt (7..0));$

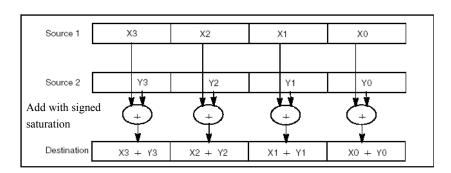
* repeat add operation for 2nd through 7th bytes *;

 $MRd[63..56] \leftarrow SaturateToSignedByte(MRs[63..56] + MRt[63..56]);$

PADDSD instruction with 64-bit operands:

MRd[15..0] SaturateToSignedDouble-byte(MRs[15..0] + MRt[15..0]);

* repeat add operation for 2nd and 3rd double-bytes *;


MRd[63..48] SaturateToSignedDouble-byte(MRs[63..48] + MRt[63..48]);

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PADDSB 对 64-bit MRs 操作数中 8 个打包的字节数和 64-bit MRt 操作数中 8 个打包的字节数,执行 SIMD 有符号加法,结果存入 MRd 操作数中相应的位置。PADDSD 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 有符号加法,结果存入 MRd 操作数中相应的位置。下图示例 PADDSD 的操作过程,PADDSB 类推。

PADDUSB/D

句型: PADDUSB/D MRd, MRs, MRt

PADDUSB/D MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27	26 25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	100001

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	100001

操作:

PADDUSB instruction with 64-bit operands:

 $MRd[7..0] \leftarrow SaturateToUnsignedByte(MRs[7..0] + MRt (7..0));$

* repeat add operation for 2nd through 7th bytes *;

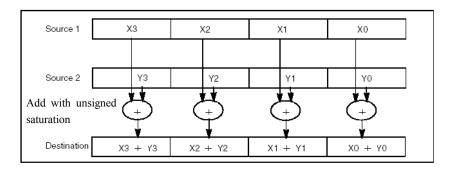
MRd[63..56] SaturateToUnsignedByte(MRs[63..56] + MRt[63..56]);

PADDUSD instruction with 64-bit operands:

MRd[15..0] ← SaturateToUnsignedDouble-byte(MRs[15..0] + MRt[15..0]);

* repeat add operation for 2nd and 3rd double-bytes *;

MRd[63..48] ← SaturateToUnsignedDouble-byte(MRs[63..48] + MRt[63..48]);


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: PADDUSB 对 64-bit MRs 操作数中 8 个打包的字节数和 64-bit MRt 操作数中 8 个打包的字节数,执行 SIMD 无符号加法,结果存入 MRd 操作数中相应的位置。 PADDUSD 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 无符号加法,结果存入 MRd 操作数中相应的位置。 下图示例 PADDUSD 的操作过程,PADDUSB 类推。

PAND

句型: PAND MRd, MRs, MRt

PAND MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	100100

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	111			1	1	I	MR	.S	dis	sp	A	Rn	1	g	g	N	1Rc	d		M	odı	m				100	10	O	

操作:

PAND:

MRd ← MRs AND MRt;

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PAND 对 64-bit MRs 操作数和 64-bit MRt 操作数,执行按位逻辑与运算,结果存入 MRd 操作数。

PAVGB/D

句型: PAVGB/D MRd, MRs, MRt

PAVGB/D MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	111100

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1	0
111111	11	MRs	disp	ARm	gg	MRd	Modm	111100	

操作:

PAVGB instruction with 64-bit operands:

 $MRt[7-0] \leftarrow (MRt[7-0] + MRs[7-0] + 1] >> 1; * temp sum before shifting is 9 bits *$

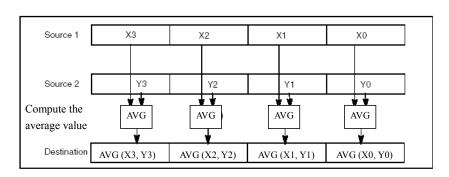
* repeat operation performed for bytes 2 through 6;

 $MRt[63-56] \leftarrow (MRt[63-56] + MRs[63-56] + 1) >> 1;$

PAVGD instruction with 64-bit operands:

 $MRt[15-0] \leftarrow (MRt[15-0] + MRs[15-0] + 1) >> 1$; * temp sum before shifting is 17 bits *

* repeat operation performed for double-bytes 2 and 3;


 $MRt[63-48] \leftarrow (MRt[63-48] + MRs[63-48] + 1) >> 1;$

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PAVGB/D对 64-bit MRs 操作数中打包的字节数/2 字节数和 64-bit MRt 操作数中打包的字节数/2 字节数,执行 SIMD 加法,每个和值再加 1,相应结果右移 1bit 作为 2个数的平均值,存入 MRd 操作数中。下图示例了 PAVGD 的操作过程,PAVGB 类推。

PCMPEQB/D/Q

句型: PCMPEQB/D/Q MRd, MRs, MRt

PCMPEQB/D/Q MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3	2	1 0
111111	01	MRs	00	MRt	gg	MRd	00000	11	0100)

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	110100

操作:

PCMPEQB instruction with 64-bit operands:

IF MRs[7..0] = MRt[7..0]

THEN $MRd[7\ 0] \leftarrow FFH;$

ELSE MRd[7..0] \leftarrow 0;

* Continue comparison of 2nd through 7th bytes in MRd and MRt *

IF MRs[63..56] = MRt[63..56]

THEN $MRd[63..56] \leftarrow FFH;$

ELSE MRd[63..56] \leftarrow 0;

PCMPEQD instruction with 64-bit operands:

IF MRs[15..0] = MRt[15..0]

THEN $MRd[15..0] \leftarrow FFFFH$;

ELSE MRd[15..0] \leftarrow 0;

* Continue comparison of 2nd and 3rd double-bytes in MRd and MRt *

IF MRs[63..48] = MRt[63..48]

THEN MRd[63..48] ← FFFFH;

ELSE MRd[63..48] \leftarrow 0;

PCMPEQQ instruction with 64-bit operands:

IF MRs[31..0] = MRt[31..0]

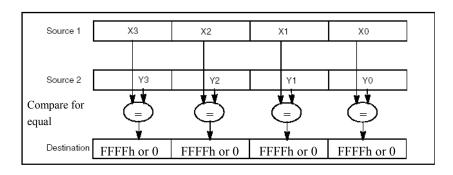
THEN MRd[31..0] ← FFFFFFFFH;

ELSE MRd[31..0] \leftarrow 0;

IF MRs[63..32] = MRt[63..32]

THEN MRd[63..32] ← FFFFFFFFH;

ELSE MRd[63..32] \leftarrow 0;


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PCMPEQB/D/Q 对 64-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 64-bit

MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 相等比较,如果相等结果全置 1,否则全置 0,结果存入 MRd 操作数中。下图示例了 PCMPEQD 的操作过程,其它类推。

执行周期: 1 cycle

PCMPGTB/D/Q

句型: PCMPGTB/D/Q MRd, MRs, MRt

PCMPGTB/D/Q MRd, MRs, Modm(ARm)

指令编码:

111111 01 MRs 00 MRt og MRd 00000 11	29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3	2 1 0
Titti of Mids of Mid gg Midd	111111 01 MRs 00 MRt gg MRd 00000 11	000

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	110000

操作:

PCMPGTB instruction with 64-bit operands:

IF MRs[7..0] > MRt[7..0]

THEN $MRd[7\ 0] \leftarrow FFH;$

ELSE MRd[7..0] \leftarrow 0;

* Continue comparison of 2nd through 7th bytes in MRd and MRt *

IF MRs[63..56] > MRt[63..56]

THEN $MRd[63..56] \leftarrow FFH;$

ELSE MRd[63..56] \leftarrow 0;

PCMPGTD instruction with 64-bit operands:

IF MRs[15..0] > MRt[15..0]

THEN $MRd[15..0] \leftarrow FFFFH;$

ELSE MRd[15..0] \leftarrow 0;

* Continue comparison of 2nd and 3rd double-bytes in MRd and MRt *

IF MRs[63..48] > MRt[63..48]

THEN $MRd[63..48] \leftarrow FFFFH;$

ELSE $MRd[63..48] \leftarrow 0$;

PCMPGTQ instruction with 64-bit operands:

IF MRs[31..0] > MRt[31..0]

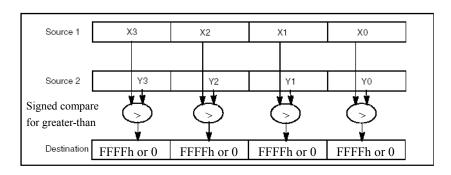
THEN MRd[31..0] ← FFFFFFFFH;

ELSE MRd[31..0] \leftarrow 0;

IF MRs[63..32] > MRt[63..32]

THEN $MRd[63..32] \leftarrow FFFFFFFFH;$

ELSE MRd[63..32] \leftarrow 0;


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PCMPGTB/D/Q 对 64-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 64-bit MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 有符号比较,如果大于结果全置 1,否则全置 0,结果存入 MRd 操作数中。下图示例了 PCMPGTD 的操作过程,其它类推。

执行周期: 1 cycle

PLOADO

句型: PLOADO MRd, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	000	disp	ARm	gg	MRd	Modm	110111

操作:

PLOADO:

 $MRd[63-0] \leftarrow memory$

操作数说明: MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PLOADO 从 memory 中指定的位置读取 64bit 数据,写入到 MDS 寄存器 MRd 中。

PMADDQD

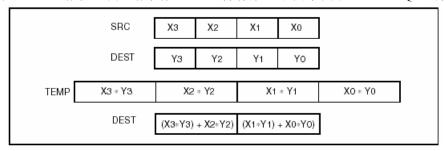
句型: PMADDQD MRd, MRs, MRt

PMADDQD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	101000

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	101000


操作:

PMADDQD instruction with 64-bit operands:

 $MRd[31..0] \leftarrow (MRs[15..0] \times MRt[15..0]) + (MRs[31..16] \times MRt[31..16]);$

 $MRd[63..32] \leftarrow (MRs[47..32] \times MRt[47..32]) + (MRs[63..48] \times MRt[63..48]);$

描述: PMADDQD 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 有符号乘法,然后相邻的 2 个 32-bit 结果相加成 1 个 32-bit 结果,最后结果存入 MRd 操作数。下图示例了 PMADDQD 的操作过程。

执行周期: 4 cycles

^{*} Signed multiplication *

PMAXSD

句型: PMAXSD MRd, MRs, MRt

PMAXSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4	4 3	2	1 (0
111111	01	MRs	00	MRt	gg	MRd	00000		111	000)	

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	111000

操作:

PMAXSD instruction for 64-bit operands:

IF MRs[15-0] > MRt[15-0]) THEN

 $(MRd[15-0] \leftarrow MRd[15-0];$

ELSE

 $(MRd[15-0] \leftarrow MRt[15-0];$

FΙ

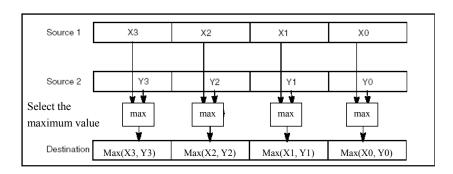
* repeat operation for 2nd and 3rd double-bytes in source and destination operands *

IF MRs[63-48] > MRt[63-48]) THEN

 $(MRd[63-48] \leftarrow MRd[63-48];$

ELSE

 $(MRd[63-48] \leftarrow MRt[63-48];$


F

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PMAXSD对 64-bit MRs 操作数中 4 个打包的有符号 2 字节数和 64-bit MRt 操作数中 4 个打包的有符号 2 字节数,执行 SIMD 有符号比较,相应较大的数存入 MRd 操作数中。下图示例了 PMAXSD 的操作过程。

PMAXUB

句型: PMAXUB MRd, MRs, MRt

PMAXUB MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8	7 6	5	4	3	2	1	0
111111	01	MRs	00	MRt	gg	MRd	000	000			111	00	1	

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	111001

操作:

PMAXUB instruction for 64-bit operands:

IF MRs[7-0] > MRt[17-0]) THEN

 $(MRd[7-0] \leftarrow MRd[7-0];$

ELSE

 $(MRd[7-0] \leftarrow MRt[7-0];$

FΙ

* repeat operation for 2nd through 7th bytes in source and destination operands *

IF MRs[63-56] > MRt[63-56]) THEN

 $(MRd[63-56] \leftarrow MRd[63-56];$

ELSE

 $(MRd[63-56] \leftarrow MRt[63-56];$

Fl

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PMAXUB对 64-bit MRs 操作数中 8 个打包的无符号字节数和 64-bit MRt 操作数中 8 个打包的无符号字节数,执行 SIMD 比较,相应较大的数存入 MRd 操作数中。 PMAXUB 操作过程类似 PMAXSD。

PMFHI

句型: PMFHI MRs, Rt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	10	MRs	Rt	10	000	00000	010000

操作:

PMFHI:

 $Rt[31-0] \leftarrow MRs[63-32]$

操作数说明: MRs: MDS 寄存器

Rt: 通用寄存器

描述: PMFHI 将 MDS 寄存器 MRs 的高 32 位的值写入到通用寄存器 Rt。

PMFLO

句型: PMFLO MRs, Rt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	10	MRs	Rt	10	000	00000	010010

操作:

PMFHI:

 $Rt[31-0] \leftarrow MRs[31-0]$

操作数说明: MRs: MDS 寄存器

Rt: 通用寄存器

描述: PMFLO 将 MDS 寄存器 MRs 的低 32 位的值写入到通用寄存器 Rt。

PMINSD

句型: PMINSD MRd, MRs, MRt

PMINSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3	2 1	0
111111	01	MRs	00	MRt	gg	MRd	00000	11	1010	

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	111	-		1	1	N	MR	S	dis	sp	A	Rn	1	g	g	N	1Rc	i		M	odı	m				111	010)	

操作:

PMINSD instruction for 64-bit operands:

IF MRs[15-0] < MRt[15-0]) THEN

 $(MRd[15-0] \leftarrow MRd[15-0];$

ELSE

 $(MRd[15-0] \leftarrow MRt[15-0];$

FΙ

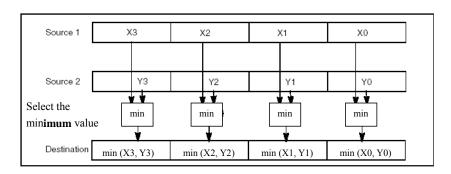
* repeat operation for 2nd and 3rd double-bytes in source and destination operands *

IF MRs[63-48] < MRt[63-48]) THEN

 $(MRd[63-48] \leftarrow MRd[63-48];$

ELSE

 $(MRd[63-48] \leftarrow MRt[63-48];$


FΙ

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PMINSD 对 64-bit MRs 操作数中 4 个打包的有符号 2 字节数和 64-bit MRt 操作数中 4 个打包的有符号 2 字节数,执行 SIMD 有符号比较,相应较小的数存入 MRd 操作数中。下图示例了 PMINSD 的操作过程。

执行周期: 1 cycle

PMINUB

句型: PMINUB MRd, MRs, MRt

PMINUB MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7	7 6	5	4	3	2	1	0
111111	01	MRs	00	MRt	gg	MRd	00000)		1	111	011		

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	111	-		1	1	ľ	МR	s	dis	sp	A	Rn	1	g	g	N	1Rc	i		M	odı	m				111	01	1	

操作:

PMINUB instruction for 64-bit operands:

IF MRs[7-0] < MRt[17-0]) THEN

 $(MRd[7-0] \leftarrow MRd[7-0];$

ELSE

 $(MRd[7-0] \leftarrow MRt[7-0];$

FΙ

* repeat operation for 2nd through 7th bytes in source and destination operands *

IF MRs[63-56] < MRt[63-56]) THEN

 $(MRd[63-56] \leftarrow MRd[63-56];$

ELSE

 $(MRd[63-56] \leftarrow MRt[63-56];$

FΙ

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PMINUB 对 64-bit MRs 操作数中 8 个打包的无符号字节数和 64-bit MRt 操作数中 8 个打包的无符号字节数,执行 SIMD 比较,相应较小的数存入 MRd 操作数中。 PMINUB 操作过程类似 PMINSD。

PMTLO

句型: PMTLO MRd, Rs

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	10	000	Rs	10	MRd	00000	010011

操作:

PMTLO:

 $MRd[31-0] \leftarrow Rs[31-0]$

操作数说明: MRd: MDS 寄存器

Rs: 通用寄存器

描述: PMTLO 将通用寄存器 Rs 的值写入到 MDS 寄存器 MRd 的低 32 位。

PMTHI

句型: PMTHI MRd, Rs

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	10	000	Rs	10	MRd	00000	010001

操作:

PMTHI:

 $MRd[63-32] \leftarrow Rs[31-0]$

操作数说明: MRd: MDS 寄存器

Rs: 通用寄存器

描述: PMTHI 将通用寄存器 Rs 的值写入到 MDS 寄存器 MRd 的高 32 位。

PMULHSD

PMACHSD

句型: PMULHSD MRd, MRs, MRt

PMACHSD MRd, MRs, MRt

PMULHSD MRd, MRs, Modm(ARm)
PMACHSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3	2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	011100/	011110

31 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1111	111			1	1]	MR	LS	dis	sp	A	Rn	1	٤	g	N	1Ro	i		M	[odi	m		()11	100	/01	111	0

操作:

PMULHSD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Signed multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow TEMP0[31-16];$

 $MRd[31-16] \leftarrow TEMP1[31-16];$

 $\mathsf{MRd}[47\text{-}32] \leftarrow \mathsf{TEMP2}[31\text{-}16];$

 $MRd[63-48] \leftarrow TEMP3[31-16];$

PMACHSD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Signed multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

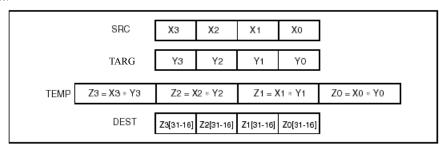
 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[31-16];$

 $MRd[31-16] \leftarrow MRd[31-16] + TEMP1[31-16];$

MRd[47-32] ← MRd[47-32] + TEMP2[31-16];

 $MRd[63-48] \leftarrow MRd[63-48] + TEMP3[31-16];$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 有符号乘法,每个 32-bit 结果的高 16-bit 存入 MRd 操作数中相应的位置。下图示例 PMULHSD 的操作过程。PMACHSD 将每次乘法结果不断累加。

执行周期: 2 cycles

PMULHUD

PMACHUD

句型: PMULHUD MRd, MRs, MRt

PMACHUD MRd, MRs, MRt

PMULHUD MRd, MRs, Modm(ARm)
PMACHUD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	011101/011111

31 30 29 28 27 2	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111111		11	l	1	MR	S	dis	sp	A	Rn	1	g	g	N	1Ro	i		M	odı	m		()11	101	/01	111	1

操作:

PMULHUD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Unsigned multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow TEMP0[31-16];$

 $MRd[31-16] \leftarrow TEMP1[31-16];$

 $\mathsf{MRd}[47\text{-}32] \leftarrow \mathsf{TEMP2}[31\text{-}16];$

 $MRd[63-48] \leftarrow TEMP3[31-16];$

PMACHUD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Unsigned multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

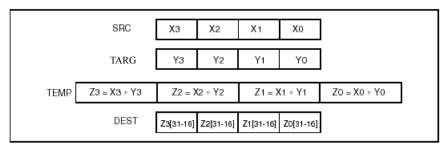
 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[31-16];$

 $MRd[31-16] \leftarrow MRd[31-16] + TEMP1[31-16];$

 $MRd[47-32] \leftarrow MRd[47-32] + TEMP2[31-16];$

 $MRd[63-48] \leftarrow MRd[63-48] + TEMP3[31-16];$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 有符号乘法,每个 32-bit 结果的高 16-bit 存入 MRd 操作数中相应的位置。下图示例 PMULHUD 的操作过程。PMACHUD 将每次乘法结果不断累加。

执行周期: 2 cycles

PMULLSD

PMACLSD

句型: PMULLSD MRd, MRs, MRt

PMACLSD MRd, MRs, MRt

PMULLSD MRd, MRs, Modm(ARm)
PMACLSD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 2	5 25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	011000/011010

31 30 29 28	27 26	5 25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111111	1	1	1]	MR	S	dis	sp	A	Rn	n	g	g	N	4Rc	d		M	odı	m		()11(000	/01	101	10

操作:

PMULLSD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Signed multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow TEMP0[15-0];$

 $MRd[31-16] \leftarrow TEMP1[15-0];$

 $MRd[47-32] \leftarrow TEMP2[15-0];$

 $MRd[63-48] \leftarrow TEMP3[15-0];$

PMACLSD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Signed multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

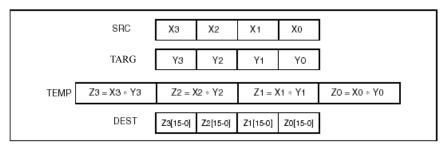
 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[15-0];$

 $MRd[31-16] \leftarrow MRd[31-16] + TEMP1[15-0];$

 $MRd[47-32] \leftarrow MRd[47-32] + TEMP2[15-0];$

 $MRd[63-48] \leftarrow MRd[63-48] + TEMP3[15-0];$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 有符号乘法,每个 32-bit 结果的低 16-bit 存入 MRd 操作数中相应的位置。下图示例 PMULLSD 的操作过程。PMACLSD 将每次乘法结果不断累加。

执行周期: 2 cycles

PMULLUD

PMACLUD

句型: PMULLUD MRd, MRs, MRt

PMACLUD MRd, MRs, MRt

PMULLUD MRd, MRs, Modm(ARm)
PMACLUD MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28	27 26	25 2	24 23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111111	1	01		MR	Rs	0	0	l	MR	t	g	g	N	ЛR	d		0	000	0		()11(001	/01	101	1

31 30 29 28 27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111111		1	1]	MR	S	di	sp	A	Rn	1	g	g	N	4Rc	d		M	odı	m		()11(001	/01	101	11

操作:

PMULLUD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Unsigned multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow TEMP0[15-0];$

 $MRd[31-16] \leftarrow TEMP1[15-0];$

 $MRd[47-32] \leftarrow TEMP2[15-0];$

 $MRd[63-48] \leftarrow TEMP3[15-0];$

PMACLUD:

TEMP0[31-0] ← MRs[15-0]×MRt[15-0]; * Unsigned multiplication *

 $TEMP1[31-0] \leftarrow MRs[31-16] \times MRt[31-16];$

 $TEMP2[31-0] \leftarrow MRs[47-32] \times MRt[47-32];$

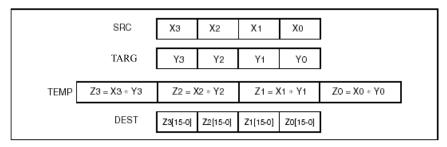
 $TEMP3[31-0] \leftarrow MRs[63-48] \times MRt[63-48];$

 $MRd[15-0] \leftarrow MRd[15-0] + TEMP0[15-0];$

 $MRd[31-16] \leftarrow MRd[31-16] + TEMP1[15-0];$

 $MRd[47-32] \leftarrow MRd[47-32] + TEMP2[15-0];$

 $MRd[63-48] \leftarrow MRd[63-48] + TEMP3[15-0];$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 无符号乘法,每个 32-bit 结果的低 16-bit 存入 MRd 操作数中相应的位置。下图示例 PMULLUD 的操作过程。PMACLUD 将每次乘法结果不断累加。

执行周期: 2 cycles

PNOR

句型: PNOR MRd, MRs, MRt

PNOR MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	11	MRd	00000	100011

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 (0
111111	11	MRs	disp	ARm	11	MRd	Modm	100011	

操作:

PNOR:

MRd ← MRd NOR MRt;

描述: PNOR 对 64-bit MRs 操作数和 64-bit MRt 操作数,执行按位逻辑或非运算,结果 存入 MRd 操作数。

POR

句型: POR MRd, MRs, MRt

POR MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	11	MRd	00000	100101

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	11	MRd	Modm	100101

操作:

POR:

MRd ← MRd OR MRt;

描述: POR 对 64-bit MRd 操作数和 64-bit MRt 操作数,执行按位逻辑或运算,结果存入 MRd 操作数。

PSADBD

句型: PSADBD MRd, MRs, MRt

PSADBD MRd, MRs, Modm(ARm)

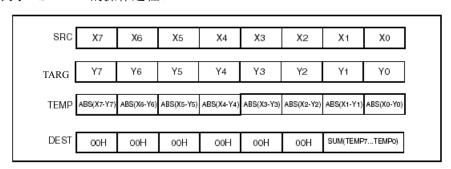
指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	11	MRd	00000	101001
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	11	MRd	Modm	101001

操作:

PSADBD instructions when using 64-bit operands:

 $TEMP0 \leftarrow ABS(MRs] - MRt[7-0]);$


* repeat operation for bytes 2 through 6 *;

TEMP7 \leftarrow ABS(MRs[56] - MRt[63-56]);

 $MRd[15:0] \leftarrow SUM(TEMP0\cdots TEMP7);$

 $MRd[63:16] \leftarrow 000000000000H;$

描述: PSADBD 对 64-bit MRs8 个打包的字节数和 64-bit MRt 操作数中 8 个打包的字节数,执行 SIMD 减法,取绝对值得到绝对差值,然后 8 个绝对差值相加成 1 个 16-bit 无符号数,存入 MRd 操作数的低 16-bit, MRd 操作数的高 48bit 置 0。下图示例了 PSADBD 的操作过程。

执行周期: 2 cycles

PSHUFD

句型: PSHUFD MRd, MRs, imm

PSHUFD MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000001

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	000001

操作:

PSHUFD:

IF (ORDER = 0)

THEN $MRd[15:0] \leftarrow MRs[15:0]$;

IF (ORDER = 1)

THEN $MRd[15:0] \leftarrow MRs[31:16];$

IF (ORDER = 2)

THEN $MRd[15:0] \leftarrow MRs[46:32];$

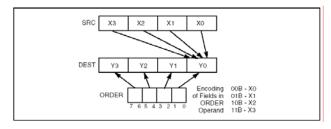
IF (ORDER = 3)

THEN MRd[15:0] ← MRs[63:47];

*Repeat operation for 2nd, 3rd, 4rddouble-bytes;

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器


MRd: MDS 寄存器

Sa: 立即数

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: MRs 中打包的 2 字节数据作换位排列,换位控制来自 MRt (imm) 的最低 8bit。 MRd 中每个 16bit 数据取自 MRs 中 4 个 16bit 数据的其中一个。这样,每个结果 16bit 数据的产生需要 2bit 选择信号,总共需要 8bit 选择信号,由立即数 sa 的最低 8 个 bit 表示(高 2bit 汇编时置 0)或 MRt 操作数的最低 8 个 bit 表示。

PSRAD/Q

句型: PSRAD/Q MRd, MRs, imm

PSRAD/Q MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000011

31 30 29 28 27 20	5 25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	000011

操作:

PSRAD:

IF (COUNT > 15)

THEN COUNT ← 16;

FI;

 $MRd[15..0] \leftarrow SignExtend(MRs[15..0] >> COUNT);$

* repeat shift operation for 2nd and 3rd double-bytes *;

 $MRd[63..48] \leftarrow SignExtend(MRs[63..48] >> COUNT);$

PSRAQ:

IF (COUNT > 31)

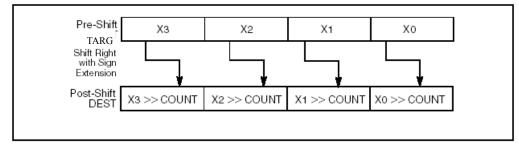
THEN COUNT ← 32;

FI;

ELSE

 $MRd[31..0] \leftarrow SignExtend(MRs[31..0] >> COUNT);$

 $MRd[63..32] \leftarrow SignExtend(MRs[63..32] >> COUNT);$


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

Sa: 立即数

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 64bit MRs 操作数中打包的 2 字节/4 字节进行 SIMD 算术右移,结果存入 MRd 操作数。下图示例了 PSRAQ 的操作过程,其它类推。

执行周期: 1 cycle

PSRLD/Q

句型: PSRLD/Q MRd, MRs, imm PSRLD/Q MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000010

31 3	0 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	111	111	l		0	1	1	MR	.S	0	0	N	MR	t	g	g	N	ΛR	d		0	000	00				000	010	0	

操作:

PSRLD:

IF (COUNT > 15)

THEN

 $MRd[64..0] \leftarrow 00000000000000000H$

ELSE

 $MRd[15..0] \leftarrow ZeroExtend(MRs[15..0] >> COUNT);$

* repeat shift operation for 2nd and 3rd double-bytes *;

 $MRd[63..48] \leftarrow ZeroExtend(MRs[63..48] >> COUNT);$

FI;

PSRLQ:

IF (COUNT > 31)

THEN

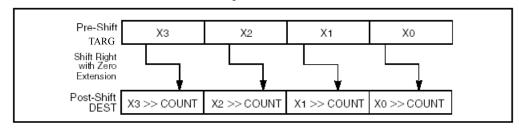
 $MRd[64..0] \leftarrow 00000000000000000H$

ELSE

 $MRd[31..0] \leftarrow ZeroExtend(MRs[31..0] >> COUNT);$

 $MRd[63..32] \leftarrow ZeroExtend(MRd[63..32] >> COUNT);$

FI;


操作数说明: MRs: MDS寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

Sa: 立即数

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 64bit MRs 操作数中打包的 2 字节/4 字节进行 SIMD 逻辑右移,结果存入 MRd 操作数。下图示例了 PSRLQ 的操作过程,其它类推。

执行周期: 1 cycle

PSLLD/Q

句型: PSLLD/Q MRd, MRs, imm

PSLLD/Q MRd, MRs, MRt

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	00	MRs	sa[9:5]	gg	MRd	sa[4:0]	000000

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	000000

操作:

PSLLD:

IF (COUNT > 15)

THEN

 $MRd[64..0] \leftarrow 00000000000000000H$

ELSE

 $MRd[15..0] \leftarrow ZeroExtend(MRs[15..0] << COUNT);$

* repeat shift operation for 2nd and 3rd double-bytes *;

MRd[63..48] ← ZeroExtend(MRs[63..48] << COUNT);

FI;

PSLLQ:

IF (COUNT > 31)

THEN

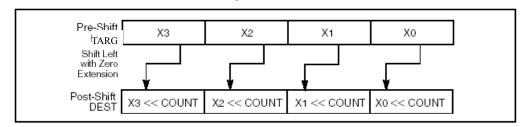
 $MRd[64..0] \leftarrow 00000000000000000H$

ELSE

 $MRd[31..0] \leftarrow ZeroExtend(MRs[31..0] << COUNT);$

 $MRd[63..32] \leftarrow ZeroExtend(MRs[63..32] << COUNT);$

FI;


操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

Sa: 立即数

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: 对 64bit MRs 操作数中打包的 2 字节/4 字节进行 SIMD 逻辑左移,结果存入 MRd 操作数。下图示例了 PSLLQ 的操作过程,其它类推。

执行周期: 1 cycle

PSTOREO

句型: PSTOREO MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	11	000	Modm	111111

操作:

PSTOREO:

Memory \leftarrow MRs[63-0]

操作数说明: MRs: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PSTOREO 将 MDS 寄存器 MRd 中的 64bit 数据写入到 memory 中指定的位置。

PSUBB/D/Q

句型: PSUBB/D/Q MRd, MRs, MRt

PSUBB/D/Q MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	101110

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	101110

操作:

PSUBB instruction with 64-bit operands:

 $MRd[7..0] \leftarrow MRs[7..0] - MRt[7..0];$

* repeat add operation for 2nd through 7th byte *;

 $MRd[63..56] \leftarrow MRs[63..56] - MRt[63..56];$

PSUBD instruction with 64-bit operands:

 $MRd[15..0] \leftarrow MRs[15..0] - MRt[15..0];$

* repeat add operation for 2nd and 3th double-byte *;

 $MRd[63..48] \leftarrow MRs[63..48] - MRt[63..48];$

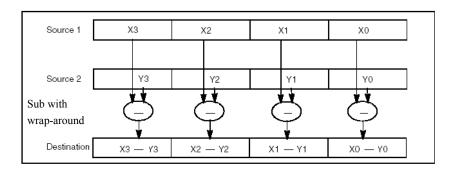
PSUBQ instruction with 64-bit operands:

 $MRd[31..0] \leftarrow MRs[31..0] - MRt[31..0];$

 $MRd[63..32] \leftarrow MRs[63..32] - MRt[63..32];$

操作数说明: MRs: MDS 寄存器

ARm:


MRt: MDS 寄存器

MRd: MDS 寄存器

间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: PSUBB/D/Q 对 64-bit MRs 操作数中打包的字节数/2 字节数/4 字节数和 64-bit MRt 操作数中打包的字节数/2 字节数/4 字节数,执行 SIMD 减法,结果存入 MRd 操作数中,溢出被忽略。下图示例 PSUBD 的操作过程,其它类推。

执行周期: 1 cycle

PSUBSB/D

句型: PSUBSB/D MRd, MRs, MRt

PSUBSB/D MRd, MRs, Modm(ARm)

指令编码:

111111 01 MRs 00 MRt gg MRd 00000 10000	
ITITI OI MICE OF MICE SE MICE)1

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	100001

操作:

PSUBSB instruction with 64-bit operands:

 $MRd[7..0] \leftarrow SaturateToSignedByte(MRs[7..0] - MRt(7..0));$

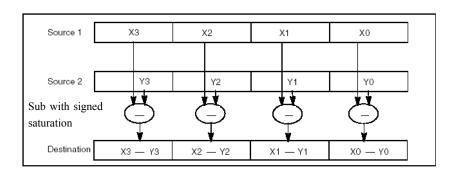
* repeat add operation for 2nd through 7th bytes *;

 $MRd[63..56] \leftarrow SaturateToSignedByte(MRs[63..56] - MRt[63..56]);$

PSUBSD instruction with 64-bit operands:

MRd[15..0] ← SaturateToSignedDouble-byte(MRs[15..0] − MRt[15..0]);

* repeat add operation for 2nd and 3rd double-bytes *;


MRd[63..48] ← SaturateToSignedDouble-byte(MRs[63..48] − MRt[63..48]);

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PSUBSB 对 64-bit MRs 操作数中 8 个打包的字节数和 64-bit MRt 操作数中 8 个打包的字节数,执行 SIMD 有符号减法,结果存入 MRd 操作数中相应的位置。PSUBSD 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 有符号减法,结果存入 MRd 操作数中相应的位置。下图示例 PSUBSD 的操作过程,PSUBSB 类推。

执行周期: 1 cycle

PSUBUSB/D

句型: PSUBUSB/D MRd, MRs, MRt

PSUBUSB/D *MRd*, *MRs*, *Modm(ARm)*

指令编码:

111111 01 MRs 00 MRt gg MRd 00000 100011	31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
	111111	01	MRs	00	MRt	gg	MRd	00000	100011

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	100011

操作:

PSUBUSB instruction with 64-bit operands:

 $MRd[7..0] \leftarrow SaturateToUnsignedByte(MRs[7..0] - MRt (7..0));$

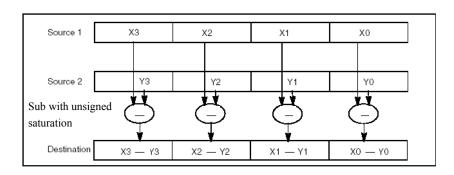
* repeat add operation for 2nd through 7th bytes *;

 $MRd[63..56] \leftarrow SaturateToUnsignedByte(MRs[63..56] - MRt[63..56]);$

PSUBUSD instruction with 64-bit operands:

MRd[15..0] ← SaturateToUnsignedDouble-byte(MRs[15..0] − MRt[15..0]);

* repeat add operation for 2nd and 3rd double-bytes *;


MRd[63..48] ← SaturateToUnsignedDouble-byte(MRs[63..48] − MRt[63..48]);

操作数说明: MRs: MDS 寄存器

MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器 Disp: 地址偏移立即数

描述: PSUBUSB 对 64-bit MRs 操作数中 8 个打包的字节数和 64-bit MRt 操作数中 8 个打包的字节数,执行 SIMD 无符号减法,结果存入 MRd 操作数中相应的位置。 PSUBUSD 对 64-bit MRs 操作数中 4 个打包的 2 字节数和 64-bit MRt 操作数中 4 个打包的 2 字节数,执行 SIMD 无符号减法,结果存入 MRd 操作数中相应的位置。 下图示例 PSUBUSD 的操作过程,PSUBUSB 类推。

执行周期: 1 cycle

PUNPCKHBD/DQ/QO

句型: PUNPCKHBD/DQ/QO MRd, MRs, MRt

PUNPCKHBD/DQ/QO MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	001010

31 30 2	29 28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	11111			1	1	N	МR	s	dis	sp	A	Rn	1	g	g	N	1Rc	i		M	odı	n				001	010)	

操作:

PUNPCKHBD:

 $MRd[7..0] \leftarrow MRs[39..32];$

 $MRd[15..8] \leftarrow MRt[39..32];$

 $MRd[23..16] \leftarrow MRs[47..40];$

 $MRd[31..24] \leftarrow MRt[47..40];$

MRd[39..32] ←MRs[55..48];

 $MRd[47..40] \leftarrow MRt[55..48];$

 $MRd[55..48] \leftarrow MRs[63..56];$

 $MRd[63..56] \leftarrow MRt[63..56];$

PUNPCKHDQ:

 $MRd[15..0] \leftarrow MRs[47..32];$

 $MRd[31..16] \leftarrow MRt[47..32];$

 $MRd[47..32] \leftarrow MRs[63..48];$

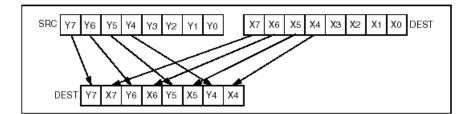
 $MRd[63..48] \leftarrow MRt[63..48];$

PUNPCKHQO:

 $MRd[31..0] \leftarrow MRs[63..32]$

 $MRd[63..32] \leftarrow MRt[63..32];$

操作数说明: MRs: MDS 寄存器


MRt: MDS 寄存器

MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: 将 64bit MRt 和 MRs 操作数中打包的字节/2 字节/4 字节相交织, 取高 64bit 存入 MRd 操作数。下图示例了 PUNPCKHBD 的操作过程, 其它类推。

PUNPCKLBD/DQ/QO

句型: PUNPCKLBD/DQ/QO MRd, MRs, MRt

PUNPCKLBD/DQ/QO MRd, MRs, Modm(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	001011

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	11	MRs	disp	ARm	gg	MRd	Modm	001011

操作:

PUNPCKLBD:

 $MRd[63..56] \leftarrow MRt[31..24];$

 $MRd[55..48] \leftarrow MRs[31..24];$

 $MRd[47..40] \leftarrow MRt[23..16];$

 $MRd[39..32] \leftarrow MRs[23..16];$

 $MRd[31..24] \leftarrow MRt[15..8];$

 $MRd[23..16] \leftarrow MRs[15..8];$

 $MRd[15..8] \leftarrow MRt[7..0];$

 $MRd[7..0] \leftarrow MRs[7..0];$

PUNPCKLDQ:

 $MRd[63..48] \leftarrow MRt[31..16];$

 $MRd[47..32] \leftarrow MRs[31..16];$

 $MRd[31..16] \leftarrow MRt[15..0];$

 $MRd[15..0] \leftarrow MRs[15..0];$

PUNPCKLQO:

 $MRd[63..32] \leftarrow MRt[31..0];$

 $MRd[31..0] \leftarrow MRs[31..0];$

操作数说明: MRs: MDS 寄存器


MRt: MDS 寄存器 MRd: MDS 寄存器

ARm: 间接寻址辅助寄存器

Disp: 地址偏移立即数

描述: 将 64bit MRt 和 MRs 操作数中打包的字节/2 字节/4 字节相交织, 取低 64bit 存入

MRd 操作数。下图示例了 PUNPCKLBD 的操作过程,其它类推。

PXOR

句型: PXOR MRd, MRs, MRt

PXOR *MRd*, *MRs*, *Modm(ARm)*

指令编码:

31 30 29 28 27 20	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0
111111	01	MRs	00	MRt	gg	MRd	00000	100110

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3	2 1	0
111111	11	MRs	disp	ARm	gg	MRd	Modm	10	0110	

操作:

PXOR:

MRd ← MRs XOR MRt;

描述: PXOR 对 64-bit MRs 操作数和 64-bit MRt 操作数,执行按位逻辑异或运算,结果存入 MRd 操作数。

RFE

句型: RFE

指令编码:

31	26	25	24	6	5	0
	010000	1	000_0000_0000_0000_0000		010	0000

操作: **SR**_{31..4}|**SR**_{5..2}→ SR

操作数说明:

SR: 状态寄存器

描述: 恢复先前中断标志和状态寄存器的核心/用户太模式位(IEp 和 KUp)到当前对应的状态位(IEc 和 KUc),恢复先前的状态位(IEo 和 KUo)到对应的状态位(IEp 和 KUp),先前的状态位保持不变。

RPTB

句型: RPTB direct

指令编码:

31 30 29 28 27 26 25	5 24 23 2	22 21 20 19	18 17	16 15	14 13	12	11 10	9	8	7	6	5	4	3	2	1	0
000000				direc	et						0			110	111		

操作:

unsigned(direct \times 4) + PC \rightarrow RE (PC of RPTB) + 4 \rightarrow RS

操作数说明:

direct: 16bit 立即数

RE: 重复结束地址寄存器 RS: 重复开始地址寄存器

描述:

RPTB 指令可以对指定的一段程序块重复执行若干次,不需要进行跳转判断,无跳转开销。在 RPTB 指令之前要有指令对 RC 寄存器进行赋值,因为 RPTB 指令本身只对 RE 和 RS 寄存器进行赋值,并不对 RC 赋值。

举例:

addi RC, \$0, 2

RPTB @3h

Inst A

Inst B

Inst C

Inst D

指令 A\B\C\三条指令循环三次,块大小为 3。

RPTS

句型: RPTS direct

31 30 29 28 27 26	25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7	6	5	4	3	2	1	0
000000	direct	1		1	110	111		

操作:

unsigned(direct x 4) \rightarrow RC

 $PC \rightarrow RE$

 $PC \rightarrow RS$

操作数说明:

direct: 16bit 立即数

RE: 重复结束地址寄存器 RS: 重复开始地址寄存器

描述:

RPTS 指令对其后的一条指令重复执行,不需要进行跳转判断,无跳转开销。执行的次数 在指令中由 Direct = n 指出,执行 n+1 次;不需要对 RC 寄存器进行赋值。

执行周期: 1 cycle

举例:

RPTS @1

Inst A

Inst B

InstC

指令 A 循环 2 次。

SB

句型: SB rt, offset(base) 或者

SB rt, mod(ARm)

指令编码:

3	31	30	2	9 2	28	27	26	25	24	12	3 2	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			10)1(00	0				ba	ise					rt										of	fse	t						
3	1	30	2	9 2	28	27	26	25	24	2.	3 2	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			10	10	00]	11	111			'		r	t .	•		N	Лос	lm		Α	Rr	n				Dis	sp			

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $Byte(GPR(rt)) \rightarrow mem(Vaddr)$

操作数说明: base: 寄存器 (通用寄存器 0~30)

rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

油灰:	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 2 2 1 1 1 1 1 1 1 1 1 1
Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKii(uisp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	++AKII(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKii(uisp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII + (disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	Akii(uisp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII + (disp)/6	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	Akii(uisp)/6	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

举例:

句型	操作
SB R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), Byte(GPR(R5)) \rightarrow mem(Vaddr)$
SB R5, *AR0(IR0)	$Vaddr = *AR0(IR0), Byte(GPR(R5)) \rightarrow mem(Vaddr)$

SH

句型: SH rt, offset(base) 或者

SH rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101001	base	rt	offset

31 3	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	10	100	1			1	111	11				rt				N	Лос	lm		A	Rr	n				Di	sp			

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $Byte(GPR(rt)) \rightarrow mem(Vaddr)$

操作数说明: base: 寄存器 (通用寄存器 0~30)

rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	+ AKII(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	'AKII++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	Arch (uisp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

举例:

句型	操作
SH R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), Byte(GPR(R5)) \rightarrow mem(Vaddr)$
SH R5, *AR0(IR0)	$Vaddr = *AR0(IR0), Byte(GPR(R5)) \rightarrow mem(Vaddr)$

001111

SHOWBITS

句型: SHOWBITS rd, ra, sa 或者

SHOWBITS rd, ra, rn

01 | 1 | 留 | 00 |

指令编码:

1111111 01 0 留 00 ra sa 11 rd sa 001111 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 7 6 5 4 3 2 1		31	30	29	28	27	26	25	5 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1				111	111	1		()1	0	ŗ	習	0	0	r	a	sa	1	1		rd				sa					001	111	1	
	_ [:	31	30	29	28	3 27	26	25	5 24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

ra sa 11

操作:

SHOWBITS:

n = sa or ValueOfReg(rn)

111111

IF (n > 32)

THEN n \leftarrow 32;

rd = HeadBitsOfVLDbuffer(n);

操作数说明: rd: 寄存器 (通用寄存器 0~7)

ra: 寄存器 (辅助寄存器 0~3)

sa: 立即数

rn: 寄存器 (通用寄存器 0~31)

描述: VLD 指令 ShowBits 完成的操做是从码流中取出 n 个比特,但是码流的指针并不

改变。其中 rd 是目标寄存器, ra 是地址寄存器, rn 是取比特数寄存器, sa 是取

rd

m

比特立即数。

SLL

句型: SLL rd, rt, sa 或者

SLLrd, rt, *+ARm(disp)或者SLLrt, @direct或者

SLL rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	0	00000	Rt	Rd	Sa	000000
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	14 13 12 11	10 9 8 7 6	4 3 2 1 0
000000	01	ARm	Rt	Rd	Disp	000000
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1
000000	10	Direct1	Rt	Di	irect2	000000
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
000000	11	ARm	Rt	Modm	Disp	000000

操作:

GPR(rt) << sa→ GPR(rd) 或者

GPR(rt) << mem(*+ARm(disp))→ GPR(rd) 或者

GPR(rt) << mem({Direct1,Direct2})→ GPR(rt) 或者

 $GPR(rt) \ll mod(ARm) \rightarrow GPR(rt)$

操作数说明:

rt:寄存器(通用寄存器 0~31)rd:寄存器(通用寄存器 0~31)ARm:间接寻址(辅助寄存器 0~7)

Sa: 立即数 Disp: 立即数

T: 寻址模式选择位。

T	源操作数 1	源操作数 2
00	寄存器	寄存器
01	寄存器	*+ARm(disp)
10	寄存器	直接寻址
11	寄存器	间接寻址

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dian)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ADn(dian)	00010	*++ARn(IR0)
10010	*++ARn(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	·AKII(ulsp)	01011	*ARn(IR1)
10100	* A D n ± ± (dign)	00100	*ARn++(IR0)
10100	*ARn++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(uisp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII++(uisp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

举例:

句型	操作
SLL R3, R7, 04h	$GPR(R7) \ll 04h \rightarrow GPR(R3)$
SLL R3, R7, *+AR1(04h)	$GPR(R7) \ll mem(*+AR1(04h)) \rightarrow GPR(R3)$
SLL R3, 0840h	$GPR(R3) \ll mem(0840h) \rightarrow GPR(R3)$
SLL R3, *AR2++(IR1)	$GPR(R3) \ll mod(AR2) \rightarrow GPR(R3)$

SLLV

SLLV																	
句型:	SLI	L V	rd,	rt, rs							Ē	或者	<u>بر</u> ا				
V — ·	SLI	LV	dst	, *+A]	Rn(c	lisp2),	*+/	4Rı	m(disp	1)		びき					
	SLI			rt, r	,	• /			\ 1	,		び 才					
	SLI	LV		, Imm		` '						ずれ マンマン マンマン アンマン アンマン アンマン アンマン アンマン アン・マン アン・マン アン・マン アン・マン アン・マン・マン アン・マン アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア					
	SLI	LV		, mod(Ē	或者	之 目				
	SLI	LV	dst	;, *+A]	Rm(disp),	rs				Ē	或者	<u>ح</u> ا				
	SLI	LV	dst	, mod((AR	n), m	od(AF	(m									
指令编码	马:																
31 30 29	9 28 27 26	25 24	23 22 2	21 20 19	18	17 16	15 14	13	12 11	10 9	8	7	6	5 4	1 3	2 1	1 0
00	0000		Rs		Rt			Rd			000	00			00	0100)
31 30 29	9 28 27 26	25 24	23 22 2	21 20 19	18	17 16	15 14	13	12 11	10 9	8	7	6	5 4	1 3	2 1	1 0
00	0000	Disp	ARn	Disp	1 /	ARn	00		Dst	Ι	Disp2	2	1		000	0100	
			1														
31 30 29	9 28 27 26	25 24	23 22 2	21 20 19	18	17 16	15 14	13	12 11	10 9	8	7	6	5 4	1 3	2 1	1 0
00	0000	00	ARn	ARm Rt		01 Dst		Modm 1		1	000100						
								<u> </u>									
31 30 29	9 28 27 26	25 24	23 22 2	21 20 19	18	17 16	15 14	13	12 11	10 9	8	7	6	5 4	1 3	2 1	1 0
00	0000	01	ARn	ı	imn	n	01		Dst]	Disp		1		000	0100	
											•						
31 30 29	9 28 27 26	25 24	23 22 2	21 20 19	18	17 16	15 14	13	12 11	10 9	8	7	6	5 4	1 3	2 1	1 0
00	0000		Rs	00	A	\Rm	10		Dst	N	1odn	 1	1		000	0100	_
					1												
31 30 29	9 28 27 26	25 24	23 22 2	21 20 19	18	17 16	15 14	13	12 11	10 9	8	7	6	5 4	1 3	2 1	1 0
00	0000	•	Rs	01	A	Rm	10		Dst]	Disp		1		000	0100	•
31 30 29	9 28 27 26	25 24	23 22 2	21 20 19	18	17 16	15 14	13	12 11	10 9	8	7	6	5 4	1 3	2 1	1 0
00	0000	Modn	n ARn	n Modr	n A	ARn	11		Dst	N	Лodr	1	1		000	0100	
			ı	1	1			<u> </u>						<u> </u>			
操作:	GPI	R(rt) <	< GPR((Rs)[4:0] →	GPR(rd)								豆	戊者	
$mem(*+ARn(disp2)) << Mem(*+ARm(disp1))[4:0] \rightarrow GPR(dst)$									豆	戊者							
	GPI	R(Rt)	<< mod	(ARm)[4:0]	→ GI	PR(dst))							百	戊者	
		(T)		(de . 4	D /		\ \	D /	1						_	V+ 4	

 $sign(Imm) \ll Mem(*+ARm(disp)) \rightarrow GPR(dst)$

 $mem(*+ARm(disp)) \le GPR(Rs) \rightarrow GPR(dst)$ $modn(ARn) \le Modm(ARm) \rightarrow GPR(dst)$

 $mod(ARm) \le GPR(Rs) \rightarrow GPR(dst)$

或者

或者 或者

操作数说明:

寄存器 (通用寄存器 0~31) rs: 寄存器 (通用寄存器 0~31) rt: rd: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) ARn: 间接寻址(辅助寄存器0~7) 寄存器 (通用寄存器 0~7) Dst:

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2
00		*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01	寄存器	*+ARn(disp)寻址
11		间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

句型	操作		
SLLV R5, R3, R7	$GPR(R3) \ll GPR(R7) [4:0] \rightarrow GPR(R5)$		
SLLV R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) << mem(*+AR2(8h))[4:0] \rightarrow$		
SLLV K3, "+AKI(III), "+AK2(8II)	GPR(R5)		
SLLV R5, R3, *AR2++(IR1)	$Mem(*AR2++(IR1)) << GPR(R3) [4:0] \rightarrow GPR(R5)$		
SLLV R5, 08h, *+AR1(1h)	$sign(08h) << Mem(*+AR1(1h)) \rightarrow GPR(R5)$		
SLLV R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) << GPR(R3) [4:0] \rightarrow GPR(R5)$		
SLLV R5, *+AR1(1h), R3	$mem(*+AR1(1h)) \le GPR(R3) [4:0] \rightarrow GPR(R5)$		
SLLV R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) << Mem(*AR2++(IR1))[4:0] \rightarrow$		
SLLV K3, 'AKI++(IKU), 'AK2++(IKI)	GPR(R5)		

SLL_SW

句型: SLL_SW dst, mod(ARn), mod(ARm), src1, src2

指令编码:

31 30 29 28 27 26	25 24	4 23 22 21	20 19	18 17 16	15 14	13 12 11	10	9 8	7 6	5 5	4 3	2 1	0
111011	0 1	Src1	Modm	Src2	Modn	n Dst	1	N	Modn	A	ARm	AF	Rn

操作: sa = GPR(src1)[4:0]

 $modm(ARm) \le sa \rightarrow GPR(dst)$ | $GPR(src2) \rightarrow modn(ARn)$

操作数说明:

src1: 寄存器 (通用寄存器 0~7) Src2: 寄存器 (通用寄存器 0~7) ARm: 间接寻址 (辅助寄存器 0~7) ARn: 间接寻址 (辅助寄存器 0~7) Dst: 寄存器 (通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	0011 *ARn(IR0)		*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	0101 *ARn(IR0)		*ARn(IR1)
0110 *ARn++(IR0)%		1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

SLL_SW R2, *+AR7(IR1), *AR0--(IR0), R5, R3

操作: mem(*AR0--(IR0)) << GPR(R5) [4:0]→ GPR(R2),

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

SLT

句型:	SLT	rd, rs, rt	或者
	SLT	dst, *+ARm(disp1), *+ARn(disp2)	或者
	SLT	dst, mod(ARm), rt	或者
	SLT	dst, *+ARm(disp), Imm	或者
	SLT	dst, rs, mod(ARm)	或者
	SLT	dst, rs, *+ARm(disp)	或者
	SLT	dst, mod(ARm), mod(ARn)	

指令编码:

TH V M V V									
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	
000000		rs		rt		rd	00000	101010	
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2 1	101010	
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	
000000	00	ARm		rt	01	Dst	Modm 1	101010	
		•	•			•	'		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	
000000	01	ARm	imm		01 Dst		Disp 1	101010	
							<u> </u>		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	
000000		rs	00	Arm	10	Dst	Modm 1	101010	
			I	I	l	I	I		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	
000000	000000 rs 01 Arm 10 Dst		Dst	Disp 1	101010				
			ı	ı	1	ı	I		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7 6	5 4 3 2 1 0	
000000	Modn	ı ARm	Modm	ARn	11	Dst	Modn 1	101010	

操作:

if $GPR(Rs) \le GPR(rt)$ then $GPR(rd)=1$ else $GPR(rd)=0$	或者	
if $Mem(*+ARm(disp1)) \le mem(*+ARn(disp2))$ then $GPR(dst) = 1$ else $GPR(dst)$	或者	
if $mod(ARm) < GPR(Rt)$ then $GPR(dst) = 1$ else $GPR(dst) = 0$	或者	
if $Mem(*+ARm(disp)) < sign(Imm)$ then $GPR(dst) = 1$ else $GPR(dst) = 0$	或者	
if GPR(Rs) < mod(Arm) then GPR(dst) = 1 else GPR(dst)=0	或者	
if $GPR(Rs) < mem(*+Arm(disp))$ then $GPR(dst) = 1$ else $GPR(dst) = 0$	或者	
if Modm(ARm) < modn(ARn) then GPR(dst)=1 else GPR(dst)=0		

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)
Dst: 寄存器 (通用寄存器 0~7)

T: 寻址模式选择位。

	Γ	源操作数 1	源操作数 2
00		*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01 寄存器		*+ARn(disp)寻址
11		间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

SLT 和 SLTU 的区别在于前者产生 overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

举例:

句型	操作		
CLT D5 D2 D7	If $GPR(R3) < GPR(R7)$ then $GPR(R5)=1$ else		
SLT R5, R3, R7	GPR(R5)=0		
SLT R5, *+AR1(1h), *+AR2(8h)	If $Mem(*+AR1(1h)) < mem(*+AR2(8h))$ then		
SL1 R3, "+AR1(111), "+AR2(811)	GPR(R5) = 1 else $GPR(R5) = 0$		
SLT R5, *AR2++(IR1), R3	If $Mem(*AR2++(IR1)) < GPR(R3)$ then $GPR(R5) = 1$		
SLI K3, 'AK2++(IKI), K3	else GPR(R5)=0		
SLT R5, *+AR1(1h), 08h	If $Mem(*+AR1(1h)) < sign(08h)$ then $GPR(R5) = 1$		
SLI K3, 'TAKI(III), USII	else GPR(R5)=0		
SLT R5, R3, *AR2++(IR1)	If $GPR(R3) < Mem(*AR2++(IR1))$ then $GPR(R5) = 1$		
SLI K3, K3, 'AK2++(IKI)	else GPR(R5)=0		
SLT R5, R3, *+AR1(1h)	If $GPR(R3) < mem(*+AR1(1h))$ then $GPR(R5) = 1$		
SLI KJ, KJ, 'TAKI(III)	else GPR(R5)=0		
SLT R5, *AR1++(IR0), *AR2++(IR1)	If $Mem(*AR1++(IR0)) < Mem(*AR2++(IR1))$ then		
SLI KJ, 'AKITT(IKU), 'AKZTT(IKI)	GPR(R5) = 1 else $GPR(R5) = 0$		

SLTI

句型: **SLTI** rt, rs, Imm 或者 或者 **SLTI** dst, @Imm

SLTI dst, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
001010	rs	rt	Iı	mm
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
001010	11111	00 Dst	Im	nm
31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8	7 6 5 4 3 2 1 0
001010	11111	01 Dst	Modm ARm	Disp

操作:

If GPR(Rs) < sign(Imm) then GPR(rt)=1 else GPR(rt)=0或者 If $GPR(dst) \le mem(Imm)$ then GPR(dst)=1 else GPR(dst)=0或者 If GPR(dst) < modm(ARm) then GPR(dst)=1 else GPR(dst)=0

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) 目标寄存器 (通用寄存器 0~31) rt: 间接寻址 (辅助寄存器 0~7) ARm: 目的寄存器 (通用寄存器 0~7) Dst:

寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。 G:

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	·+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-Arch(uisp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	++AKII(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII ⁺⁺ (disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	Arcii(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII (disp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	Aixii(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

SLTI 与 SLTIU 的区别在于前者产生 Overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

- D1.		
	句型	操作
SLTI	R5, R3, 0840h	If $GPR(R3) < sign(0840h)$ then $GPR(R5)=1$ else $GPR(R5)=0$
SLTI	R5, @0840h	If $GPR(R5) \le mem(0840h)$ then $GPR(R5)=1$ else $GPR(R5)=0$
SLTI	R5, *AR2++(40h)	If GPR(R5) < mem(AR2) then GPR(R5)=1 else GPR(R5)=0 AR2=AR2+40h

SLTIU

句型: SLTIU rt, rs, Imm 或者 SLTIU dst, @Imm 或者

SLTIU dst, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
001011	rs	rt	Imm

3	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		(001	01	1			1	111	1		0	0		Dst	t								Im	ım							

31 30 29 28 27 26	25 24 23 22 21	20 19	18 17 16	15 14 13 12 11	10 9 8	7 6 5 4 3 2 1 0
001011	11111	01	Dst	Modm	ARm	Disp

操作:

If GPR(Rs) < sign(Imm) then GPR(rt)=1 else GPR(rt)=0 或者 If GPR(dst) < mem(Imm) then GPR(dst)=1 else GPR(dst)=0 或者 If GPR(dst) < modm(ARm) then GPR(dst)=1 else GPR(dst)=0

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) rt: 目标寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) Dst: 目的寄存器 (通用寄存器 0~7)

G: 寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKii(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	AKII(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	Aidi (disp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	Aixii(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

SLTI 与 SLTIU 的区别在于前者产生 Overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

	句型	操作
SLTI	R5, R3, 0840h	If $GPR(R3) < sign(0840h)$ then $GPR(R5)=1$ else $GPR(R5)=0$
SLTI	R5, @0840h	If $GPR(R5) \le mem(0840h)$ then $GPR(R5)=1$ else $GPR(R5)=0$
SLTI	R5, *AR2++(40h)	If GPR(R5) < mem(AR2) then GPR(R5)=1 else GPR(R5)=0 AR2=AR2+40h

SLTU

句型:	SLTU	rd, rs, rt	或者
	SLTU	dst, *+ARm(disp1), *+ARn(disp2)	或者
	SLTU	dst, mod(ARm), rt	或者
	SLTU	dst, *+ARm(disp), Imm	或者
	SLTU	dst, rs, mod(ARm)	或者
	SLTU	dst, rs, *+ARm(disp)	或者
	SLTU	dst, mod(ARm), mod(ARn)	

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0		
000000		rs		rt		rd	00000		101011		
					•						
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0		
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2	1	101011		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0		
000000	00	ARm		rt	01	Dst	Modm	1	101011		
		•	•		•						
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0		
000000	01	ARm	j	mm	01	Dst	Disp	1	101011		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0		
000000		rs	00	ARm	10	Dst	Modm	1	1 101011		
				•		•					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0		
000000		rs	01	ARm	10	Dst	Disp	1	101011		
									1		
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0		
000000	Modn	ı ARm	Modm	ARn	11	Dst	Modn	1	101011		

操作:

if $GPR(Rs) \le GPR(rt)$ then $GPR(dst)=1$ else $GPR(dst)=0$	或者
if $Mem(*+ARm(disp1)) \le mem(*+ARn(disp2))$ then $GPR(dst) = 1$ else $GPR(dst)$	或者
if $mod(ARm) < GPR(Rt)$ then $GPR(dst) = 1$ else $GPR(dst) = 0$	或者
if $Mem(*+ARm(disp)) < sign(Imm)$ then $GPR(dst) = 1$ else $GPR(dst) = 0$	或者
if GPR(Rs) < mod(ARm) then GPR(dst) = 1 else GPR(dst)=0	或者
if GPR(Rs) < mem(*+ARm(disp)) then GPR(dst) =1 else GPR(dst)=0	或者
if Modm(ARm) < modn(ARn) then GPR(dst)=1 else GPR(dst)=0	

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)
Dst: 寄存器 (通用寄存器 0~7)

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2				
0	00	*+ARn(disp)寻址	*+ARn(disp)寻址				
01	E=00	间接寻址	寄存器				
01	E=01	*+ARn(disp)寻址	立即数				
10	E=00	寄存器	间接寻址				
10	E=01	寄存器	*+ARn(disp)寻址				
1	1	间接寻址	间接寻址				

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

SLT 和 SLTU 的区别在于前者产生 overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

句型	操作							
SLTU R5, R3, R7	If GPR(R3) < GPR(R7) then GPR(R5)=1 else							
SETURS, RS, R/	GPR(R5)=0							
SLTU R5, *+AR1(1h), *+AR2(8h)	If $Mem(*+AR1(1h)) < mem(*+AR2(8h))$ then							
SETURS, **+ART(III), **+ARZ(6II)	GPR(R5) = 1 else $GPR(R5) = 0$							
SLTU R5, *AR2++(IR1), R3	If $Mem(*AR2++(IR1)) < GPR(R3)$ then $GPR(R5) = 1$							
SLIURS, 'ARZ++(IRI), RS	else GPR(R5)=0							
CI TII D5	If Mem(*+AR1(1h)) < sign(Imm) then GPR(R5) =1							
SLTU R5, *+AR1(1h), 08h	else GPR(R5)=0							
SLTU R5, R3, *AR2++(IR1)	If $GPR(R3) < Mem(*AR2++(IR1))$ then $GPR(R5) = 1$							
SL10 R3, R3, 'AR2++(IR1)	else GPR(R5)=0							
CLTILDS D2 *+AD1(1b)	If $GPR(R3) < mem(*+AR1(1h))$ then $GPR(R5) = 1$							
SLTU R5, R3, *+AR1(1h)	else GPR(R5)=0							
CLTILD5 *AD1++/ID0\ *AD2++/ID1\	If $Mem(*AR1++(IR0)) < Mem(*AR2++(IR1))$ then							
SLTU R5, *AR1++(IR0), *AR2++(IR1)	GPR(R5) = 1 else $GPR(R5) = 0$							

SRA

句型: SRA rd, rt, sa 或者

SRA rd, rt, *+ARm(disp) 或者 SRA rt, @(direct) 或者

SRA rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
000000	C	00000	Rt	Rd	Sa	000011			
31 30 29 28 27 26	25 24	23 22 21	2010181716	15 14 13 13 11	10 9 8 7 6	5 4 3 2 1 0			
000000	01	ARm	Rt	Rd	Disp	000011			
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
000000	10	Direct1	Rt	Di	irect2	000011			
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3									
000000	11	ARm	Rt	Modm	Disp	000011			

操作:

GPR(rt) >> sa→ GPR(rd) 或者

GPR(rt) >> mem(*+ARm(disp))→ GPR(rd) 或者

GPR(rt) >> mem({Direct1,Direct2})→ GPR(rt) 或者

 $GPR(rt) \gg mod(ARm) \rightarrow GPR(rt)$

操作数说明:

rt:寄存器(通用寄存器 0~31)rd:寄存器(通用寄存器 0~31)ARm:间接寻址(辅助寄存器 0~7)

Sa: 立即数 Disp: 立即数

T: 寻址模式选择位。

	7 - 27 1 - 27 1 - 2	
T	源操作数 1	源操作数 2
00	寄存器	寄存器
01	寄存器	*+ARm(disp)
10	寄存器	直接寻址
11	寄存器	间接寻址

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dian)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(uisp)	01001	*-ARn(IR1)
10010	*++ADn(dian)	00010	*++ARn(IR0)
10010	*++ARn(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	'AKII++(uisp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(uisp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII++(uisp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型	操作
SRA R3, R7, 04h	$GPR(R7) >> 04h \rightarrow GPR(R3)$
SRA R3, R7, *+AR1(04h)	$GPR(R7) >> mem(*+AR1(04h)) \rightarrow GPR(R3)$
SRA R3, 0840h	$GPR(R3) \gg mem(0840h) \rightarrow GPR(R3)$
SRA R3, *AR2++(IR1)	$GPR(R3) >> mod(AR2) \rightarrow GPR(R3)$

SRAV

000000

Modm ARm Modm

句型: SRA	V	rd, 1	rt, rs				或	或者								
SRA	V	dst,	*+AR	n(disp2),	*+/	ARm(disp	01) 或	者								
SRA	V	dst,	dst, rt, mod(ARm) 或者													
SRA	V	dst,	dst, Imm, *+ARm(disp) 或者													
SRA	V	dst,	mod(ARm), r	者											
SRA	V	dst,	dst,*+ARm(disp),rs 或者													
SRA	V	dst,	mod(A	ARn), m	od(AR	(m)										
指令编码:																
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5	4 3	2 1 0					
000000		Rs		Rt		Rd	00000)		000	111					
			l													
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4	4 3	2 1 0					
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2	1	000111							
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5	4 3	2 1 0					
000000	00	ARm	'	Rt	01	Dst	Modm	1	000111							
	25/24	222221	2010	101716	1.5.1.4	121211	1000		Ι <u>.</u> Τ							
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4	4 3	2 1 0					
000000	01	ARm	j	imm	01	Dst	Disp	1		000	111					
							•									
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5	4 3	2 1 0					
000000		Rs	00	ARm	10	Dst	Modm	1		000	111					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5	4 3	2 1 0					
000000		Rs	01	ARm	10	Dst	Disp	1		000	111					
						•			•							
31 30 29 28 27 26	25 24	22 22 21	20 10	10 17 16	1.5 1.4	12 12 11	10 9 8 7	6	5 4	4 3	2 1 0					

操作:	$GPR(rt) >> GPR(Rs)[4:0] \rightarrow GPR(rd)$	或者
	$mem(*+ARn(disp2)) >> Mem(*+ARm(disp1))[4:0] \rightarrow GPR(dst)$	或者
	$GPR(Rt) \gg mod(ARm)[4:0] \rightarrow GPR(dst)$	或者
	$sign(Imm) >> Mem(*+ARm(disp)) \rightarrow GPR(dst)$	或者
	$mod(ARm) >> GPR(Rs) \rightarrow GPR(dst)$	或者
	$mem(*+ARm(disp)) >> GPR(Rs) \rightarrow GPR(dst)$	或者
	$modn(ARn) >> Modm(ARm) \rightarrow GPR(dst)$	

ARn

11

Dst

Modn

000111

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)
Dst: 寄存器 (通用寄存器 0~7)

T: 寻址模式选择位。

7	Γ	源操作数 1	源操作数 2						
0	0	*+ARn(disp)寻址	*+ARn(disp)寻址						
01	E=00	间接寻址	寄存器						
01	E=01	*+ARn(disp)寻址	立即数						
10	E=00	寄存器	间接寻址						
10	E=01	寄存器	*+ARn(disp)寻址						
1	1	间接寻址	间接寻址						

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

1 24.	
句型	操作
SRAV R5, R3, R7	$GPR(R3) \gg GPR(R7) [4:0] \rightarrow GPR(R5)$
SRAV R5, *+AR1(1h), *+AR2(8h)	$\begin{array}{ccc} Mem(*+AR1(1h)) & >> & mem(*+AR2(8h))[4:0] & \rightarrow \\ GPR(R5) & & & \end{array}$
SRAV R5, R3, *AR2++(IR1)	$Mem(*AR2++(IR1)) >> GPR(R3) [4:0] \rightarrow GPR(R5)$
SRAV R5, 08h, *+AR1(1h)	$sign(08h) \gg Mem(*+AR1(1h)) \rightarrow GPR(R5)$
SRAV R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) >> GPR(R3) [4:0] \rightarrow GPR(R5)$
SRAV R5, *+AR1(1h), R3	$mem(*+AR1(1h)) >> GPR(R3) [4:0] \rightarrow GPR(R5)$
SRAV R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) >> Mem(*AR2++(IR1))[4:0] \rightarrow$ $GPR(R5)$

SRA_SW

句型: SRA_SW dst, mod(ARn), mod(ARm), src1, src2

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111011		1		0	0		Src	1	Мо	dm		Src	2	Μc	dn	ì	Dst	t	1		M	odr	1	A	ARr	n		AR	n		

操作: sa = GPR(src1)[4:0]

 $modm(ARm) >> sa \rightarrow GPR(dst)$ | $GPR(src2) \rightarrow modn(ARn)$

操作数说明:

 src1:
 寄存器 (通用寄存器 0~7)

 Src2:
 寄存器 (通用寄存器 0~7)

 ARm:
 间接寻址 (辅助寄存器 0~7)

 ARn:
 间接寻址 (辅助寄存器 0~7)

 Dst:
 寄存器 (通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:

SRA_SW R2, *+AR7(IR1), *AR0--(IR0), R5, R3

操作: mem(*AR0--(IR0)) >> GPR(R5) [4:0]→ GPR(R2),

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

SRL

句型: SRL rd, rt, sa 或者

SRL rd, rt, *+ARm(disp) 或者 SRL rt, @(direct) 或者

SRL rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
000000	0	0000	Rt	Rd	Sa	000010			
	25/24		2010101515		10005				
31 30 29 28 27 26	I					5 4 3 2 1 0			
000000	01	ARm	Rt	Rd	Disp	000010			
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
000000	10	Direct1	Rt	D	irect2	000010			
31 30 29 28 27 26	25 24	23 22 21	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
000000	11	ARm	Rt	Modm	Disp	000010			

操作:

GPR(rt) >> sa→ GPR(rd) 或者

GPR(rt) >> mem(*+ARm(disp))→ GPR(rd) 或者

GPR(rt) >> mem({Direct1,Direct2})→ GPR(rt) 或者

 $GPR(rt) \gg mod(ARm) \rightarrow GPR(rt)$

操作数说明:

rt:寄存器(通用寄存器 0~31)rd:寄存器(通用寄存器 0~31)ARm:间接寻址(辅助寄存器 0~7)

Sa: 立即数 Disp: 立即数

T: 寻址模式选择位。

T	源操作数 1	源操作数 2
00	寄存器	寄存器
01	寄存器	*+ARm(disp)
10	寄存器	直接寻址
11	寄存器	间接寻址

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dian)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	'-AKII(disp)	01001	*-ARn(IR1)
10010	* + + A Dn(dian)	00010	*++ARn(IR0)
10010	*++ARn(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	'AKII++(uisp)	01100	*ARn++(IR1)
10101	*ADn (dign)	00101	*ARn(IR0)
10101	*ARn(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	'AKII++(uisp)%	01110	*ARn++(IR1)%
10111	* A Dn (dign)0/	00111	*ARn(IR0)%
10111	*ARn(disp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型	操作
SRL R3, R7, 04h	$GPR(R7) >> 04h \rightarrow GPR(R3)$
SRL R3, R7, *+AR1(04h)	$GPR(R7) \gg mem(*+AR1(04h)) \rightarrow GPR(R3)$
SRL R3, 0840h	$GPR(R3) \gg mem(0840h) \rightarrow GPR(R3)$
SRL R3, *AR2++(IR1)	$GPR(R3) \gg mod(AR2) \rightarrow GPR(R3)$

SRLV

SRLV															
句型: 指令编码:	SRI SRI SRI SRI SRI SRI	LV LV LV LV	dst, dst, dst, dst,	rt, m Imm, mod(A *+AR	an(disp2) nod(ARm *+ARr ARm), am(disp) ARn), r	n) n(disp) rs , rs		p1)	或或或或或或或	× 1 × 1 × 1					
31 30 29 28	27 26	25 24	23 22 21	20 19	18 17 10	5 15 14	13 12 11	10 9	8 7	6	5	4 3	2	1	0
000000)		Rs		Rt		Rd	00	0000			00	011	0	
31 30 29 28	27 26	25 24	23 22 21	20 19	18 17 10	5 15 14	13 12 11	10 9	8 7	6	5	4 3	2	1	0
000000)	Disp1	ARm	Disp1	ARn	00	Dst	Dis	p2	1		00	0110	0	
31 30 29 28	27 26	25 24	23 22 21	20 19	18 17 10	5 15 14	13 12 11	10 9 8	8 7	6	5	4 3	2	1	0
000000)	00	ARm		Rt	01	Dst	Mod	dm	1		00	0110	0	
31 30 29 28		25 24	23 22 21 ARm		18 17 16	01	13 12 11 Dst	10 9 S	8 7 sp	6	5	4 3	0110		0
		<u> </u>				1	<u> </u>	<u> </u>							
31 30 29 28	27 26	25 24	23 22 21	20 19	18 17 10	5 15 14	13 12 11	10 9	8 7	6	5	4 3	2	1	0
000000)		Rs	00	ARm	10	Dst	Mod	dm	1		00	0110	0	
31 30 29 28		25 24	23 22 21 Rs	20 19	18 17 16 ARm	5 15 14	13 12 11 Dst	10 9 8	8 7 sp	6	5	4 3	0110	<u> </u>	0
					<u> </u>		<u> </u>			_					_
31 30 29 28	27 26	25 24	23 22 21	20 19	18 17 10	5 15 14	13 12 11	10 9 8	8 7	6	5	4 3	2	1	0
000000)	Modn	ı ARm	Modm	ARn	11	Dst	Mo	dn	1		00	0110	0	
操作:	GPI	R(rt) >:	> GPR(R	s)[4:0]	→ GPR	(rd)	1	_		ı	1	Ę	或者		

操作: $GPR(rt) >> GPR(Rs)[4:0] \rightarrow GPR(rd)$ 或者 $mem(*+ARn(disp2)) >> Mem(*+ARm(disp1))[4:0] \rightarrow GPR(dst)$ 或者 $GPR(Rt) >> mod(ARm)[4:0] \rightarrow GPR(dst)$ 或者 $sign(Imm) >> Mem(*+ARm(disp)) \rightarrow GPR(dst)$ 或者 $mod(ARm) >> GPR(Rs) \rightarrow GPR(dst)$ 或者 mem(*+ARm(disp)) >> GPR(dst) 或者 $mem(*+ARm(disp)) >> GPR(Rs) \rightarrow GPR(dst)$ 或者 $modn(ARn) >> Modm(ARm) \rightarrow GPR(dst)$

操作数说明:

寄存器 (通用寄存器 0~31) rs: 寄存器 (通用寄存器 0~31) rt: rd: 寄存器 (通用寄存器 0~31) 间接寻址 (辅助寄存器 0~7) ARm: ARn: 间接寻址(辅助寄存器0~7) 寄存器 (通用寄存器 0~7) Dst:

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2				
0	00	*+ARn(disp)寻址	*+ARn(disp)寻址				
01	E=00	间接寻址	寄存器				
01	E=01	*+ARn(disp)寻址	立即数				
10	E=00	寄存器	间接寻址				
10	E=01	寄存器	*+ARn(disp)寻址				
11		间接寻址	间接寻址				

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

句型	操作						
SRLV R5, R3, R7	$GPR(R3) \gg GPR(R7) [4:0] \rightarrow GPR(R5)$						
SRLV R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) >> mem(*+AR2(8h))[4:0] \rightarrow$						
SKL V K3, TAKT(TII), TAKZ(OII)	GPR(R5)						
SRLV R5, R3, *AR2++(IR1)	$Mem(*AR2++(IR1)) >> GPR(R3) [4:0] \rightarrow GPR(R5)$						
SRLV R5, 08h, *+AR1(1h)	$sign(08h) >> Mem(*+AR1(1h)) \rightarrow GPR(R5)$						
SRLV R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) >> GPR(R3) [4:0] \rightarrow GPR(R5)$						
SRLV R5, *+AR1(1h), R3	$mem(*+AR1(1h)) >> GPR(R3) [4:0] \rightarrow GPR(R5)$						
SRLV R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) >> Mem(*AR2++(IR1))[4:0] \rightarrow$						
SKL v K3, 'AK1++(IK0), 'AK2++(IK1)	GPR(R5)						

SRL_SW

句型: SRL_SW dst, mod(ARn), mod(ARm), src1, src2

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		111	011	1		0	1	,	Src	1	Mo	dm	,	Src	2	Mc	odn	1	Dst	į	0		M	odı	n	A	ARr	n		AR	n

操作: sa = GPR(src1)[4:0]

 $modm(ARm) >> sa \rightarrow GPR(dst)$ | $GPR(src2) \rightarrow modn(ARn)$

操作数说明:

 src1:
 寄存器 (通用寄存器 0~7)

 Src2:
 寄存器 (通用寄存器 0~7)

 ARm:
 间接寻址 (辅助寄存器 0~7)

 ARn:
 间接寻址 (辅助寄存器 0~7)

 Dst:
 寄存器 (通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:

SRL_SW R2, *+AR7(IR1), *AR0--(IR0), R5, R3

操作: mem(*AR0--(IR0)) >> GPR(R5) [4:0]→ GPR(R0),

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

SUB

句型:	SUB	rd, rs, rt	或者
	SUB	dst, *+ARm(disp1), *+ARn(disp2)	或者
	SUB	dst, mod(ARm), rt	或者
	SUB	dst, *+ARm(disp), Imm	或者
	SUB	dst, rs, mod(ARm)	或者
	SUB	dst, rs, *+ARm(disp)	或者
	SUB	dst, mod(ARm), mod(ARn)	

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4	3 2 1 0					
000000		rs		rt		rd	00000)	100010						
							1		_1						
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7	6	5 4	3 2 1 0					
000000	Disp1	ARm	Disp1	ARn	00	dst	Disp2	1	1	00010					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	5 15 14	13 12 11	10 9 8 7	6	5 4	3 2 1 0					
000000	00	ARm		Rt	01	dst	Modm	1	1	00010					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4	3 2 1 0					
000000	01	ARm	i	mm	01	dst	Disp	1	1	100010					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4	3 2 1 0					
000000		rs	00	ARm	10	dst	Modm	1	1	00010					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4	3 2 1 0					
000000		rs	01	ARm	10	dst	Disp	1	1	00010					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4	3 2 1 0					
000000	Modn	ı ARm	Modm	ARn	11	dst	Modn	1	1 100010						

操作:	$GPR(Rs) - GPR(rt) \rightarrow GPR(rd)$	或者
	$Mem(*+ARm(disp1)) - mem(*+ARn(disp2)) \rightarrow GPR(dst)$	或者
	$mod(ARm) - GPR(Rt) \rightarrow GPR(dst)$	或者
	$Mem(*+ARm(disp)) - sign(Imm) \rightarrow GPR(dst)$	或者
	$GPR(Rs) - mod(ARm) \rightarrow GPR(dst)$	或者
	$GPR(Rs) - mem(*+ARm(disp)) \rightarrow GPR(dst)$	或者

 $Modm(ARm) - modn(ARn) \rightarrow GPR(dst)$

操作数说明:

寄存器 (通用寄存器 0~31) rs: 寄存器 (通用寄存器 0~31) rt: rd: 寄存器 (通用寄存器 0~31) 间接寻址 (辅助寄存器 0~7) ARm: ARn: 间接寻址(辅助寄存器0~7) 寄存器 (通用寄存器 0~7) Dst:

T: 寻址模式选择位。

7	Γ	源操作数 1	源操作数 2
0	0	*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01	寄存器	*+ARn(disp)寻址
1	1	间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

句型	操作								
SUB R5, R3, R7	$GPR(R3) - GPR(R7) \rightarrow GPR(R5)$								
SUB R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) - mem(*+AR2(8h)) \rightarrow GPR(R5)$								
SUB R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) - GPR(R3) \rightarrow GPR(R5)$								
SUB R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) - sign(08h) \rightarrow GPR(R5)$								
SUB R5, R3, *AR2++(IR1)	$GPR(R3) - Mem(*AR2++(IR1)) \rightarrow GPR(R5)$								
SUB R5, R3, *+AR1(1h)	$GPR(R3) - mem(*+AR1(1h)) \rightarrow GPR(R5)$								
SUB R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) - Mem(*AR2++(IR1)) \rightarrow$								
SUD K3, 'AKITT(IKU), 'AK2TT(IKI)	GPR(R5)								

SUBU

句型:	SUBU	rd, rs, rt	或者
	SUBU	dst, *+ARm(disp1), *+ARn(disp2)	或者
	SUBU	dst, mod(ARm), rt	或者
	SUBU	dst, *+ARm(disp), Imm	或者
	SUBU	dst, rs, mod(ARm)	或者
	SUBU	dst, rs, *+ARm(disp)	或者
	SUBU	dst, $mod(ARm)$, $mod(ARn)$	

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0					
000000		rs		rt	rd 00000				100011					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0					
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2	1	100011					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0					
000000	00	ARm		rt	01	Dst	Modm	1	100011					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0					
000000	01	ARm	j	imm	01	Dst	Disp	1	100011					
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0					
000000		rs	00	Arm	10	Dst	Modm	1	100011					
			·											
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0					
000000	00000 rs 01 Arm		Arm	10	Dst	Disp	1	100011						
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6	5 4 3 2 1 0					
000000	Modn	ı ARm	Modm	ARn	11	Dst	Modn	1	100011					

操作:	$GPR(Rs) - GPR(rt) \rightarrow GPR(rd)$	或者
	$Mem(*+ARm(disp1)) - mem(*+ARn(disp2)) \rightarrow GPR(dst)$	或者
	$mod(ARm) - GPR(Rt) \rightarrow GPR(dst)$	或者
	$Mem(*+ARm(disp)) - sign(Imm) \rightarrow GPR(dst)$	或者
	$GPR(Rs) - mod(ARrm) \rightarrow GPR(dst)$	或者
	$GPR(Rs) - mem(*+ARm(disp)) \rightarrow GPR(dst)$	或者

 $Modm(ARm) - modn(ARn) \rightarrow GPR(dst)$

操作数说明:

rs: 寄存器 (通用寄存器 0~31)
rt: 寄存器 (通用寄存器 0~31)
rd: 寄存器 (通用寄存器 0~31)
ARm: 间接寻址 (辅助寄存器 0~7)
ARn: 间接寻址 (辅助寄存器 0~7)
Dst: 寄存器 (通用寄存器 0~7)

T: 寻址模式选择位。

-	Γ	源操作数 1	源操作数 2
0	00	*+ARn(disp)寻址	*+ARn(disp)寻址
01	E=00	间接寻址	寄存器
01	E=01	*+ARn(disp)寻址	立即数
10	E=00	寄存器	间接寻址
10	E=01	寄存器	*+ARn(disp)寻址
1	1	间接寻址	间接寻址

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

SUB 和 SUBU 的区别在于前者产生 overflow 异常,而后者不产生任何异常。

执行周期: 1 cycle

句型	操作						
SUBU R5, R3, R7	$GPR(R3) - GPR(R7) \rightarrow GPR(R5)$						
SUBU R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) - mem(*+AR2(8h)) \rightarrow GPR(R5)$						
SUBU R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) - GPR(R3) \rightarrow GPR(R5)$						
SUBU R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) - sign08h) \rightarrow GPR(R5)$						
SUBU R5, R3, *AR2++(IR1)	$GPR(R3) - Mem(*AR2++(IR1)) \rightarrow GPR(R5)$						
SUBU R5, R3, *+AR1(1h)	$GPR(R3) - mem(*+AR1(1h)) \rightarrow GPR(rd)$						
SUBU R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) - Mem(*AR2++(IR1)) \rightarrow$						
SUBU K3, 'AK1++(IR0), "AR2++(IR1)	GPR(R5)						

SUB_SW

句型: SUB_SW dst, mod(ARn), mod(ARm), src1, src2

指令编码:

31 30 29 28 27 26	25	24	23 22	21	20 1	.9 18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
110100	0	0	Src	1]	Mod	m	Src	2	Mo	dn	1	Dst	,	1		M	odr	1	A	\ Rr	n	4	AR	n

操作: $modm(ARm) - GPR(src1) \rightarrow GPR(dst)$ || $GPR(src2) \rightarrow modn(ARn)$

操作数说明:

src1: 寄存器 (通用寄存器 0~7) Src2: 寄存器 (通用寄存器 0~7) ARm: 间接寻址 (辅助寄存器 0~7) ARn: 间接寻址 (辅助寄存器 0~7) Dst: 寄存器 (通用寄存器 0~7)

描述:

Mod	偏移地址的计算	Mod	偏移地址的计算
(4bit)	一個多地址印月昇	(4bit)	一個多地址的月昇
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:

SUB_SW R2, *+AR7(IR1), R5, *AR0--(IR0), R3 操作: mem(*AR0--(IR0)) - GPR(R5) → GPR(R0),

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

SW

句型: SW rt, offset(base) 或者

SW rt, mod(ARm)

指令编码:

101011 base rt offset	3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				10	101	1			1	bas	e	·			rt		·								of	fse	t						

31 30 29 28	8 27 26	25 2	4 23	22 2	1 20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
10101	1		1111	1			rt				N	1oc	lm		Α	Rr	n				Di	sp			

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $GPR(rt) \rightarrow mem(Vaddr)$

操作数说明: base: 寄存器 (通用寄存器 0~30)

rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKII(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	+ AKII(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII (uisp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	Archi (uisp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句	型	操作
SW	7 R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), GPR(R5) \rightarrow mem(Vaddr)$
SW	V R5, *AR0(IR0)	$Vaddr = *AR0(IR0), GPR(R5) \rightarrow mem(Vaddr)$

SWL

句型: SWL rt, offset(base) 或者

SWL rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101010	base	rt	offset

31	30 2	29	28	27	26	25	5 2	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	10)1(010)				1	111	1				rt				N	Лос	lm		A	ARr	n				Di	sp			

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $Left(GPR(rt)) \rightarrow mem(Vaddr)$

操作数说明: base: 寄存器 (通用寄存器 0~30)

rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ARn(disp)	00000	*+ARn(IR0)
10000	+AKII(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-AKii(uisp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	AKII(uisp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	Arch (disp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	AKII(uisp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型	操作
SWL R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), left(GPR(R5)) \rightarrow mem(Vaddr)$
SWL R5, *AR0(IR0)	$Vaddr = *AR0(IR0), left(GPR(R5)) \rightarrow mem(Vaddr)$

SWR

句型: SWR rt, offset(base) 或者

SWR rt, mod(ARm)

指令编码:

31 30 29 28 27 26	25 24 23 22 21	20 19 18 17 16	15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
101110	base	rt	offset

31 3	30 29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	101	1110)			1	111	1				rt				N	Лос	lm		A	Rr	n				Di	sp			

操作:

Vaddr = sign(offset) + GPR(base), 或者 Vaddr = Mod(ARm), $Right(GPR(rt)) \rightarrow mem(Vaddr)$

操作数说明: base: 寄存器 (通用寄存器 0~30)

rt: 寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7)

Disp: 立即数 offset: 立即数

描述:

油坯:			
Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dian)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-Aicii(disp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	· ++AKii(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	AKII(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII (disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	Akii(uisp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII (disp)/0	01110	*ARn++(IR1)%
10111	*ARn(disp)%	00111	*ARn(IR0)%
10111	Aixii(disp)/0	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

句型		操作
SWR	R5, 0840h(R3)	$Vaddr = sign(0840h) + GPR(R3), Right(GPR(R5)) \rightarrow mem(Vaddr)$
SWR	R5, *AR0(IR0)	$Vaddr = *AR0(IR0), Right(GPR(R5)) \rightarrow mem(Vaddr)$

SW_SW

句型: SW_SW mod(ARm), mod(ARn), src1, src2

指令编码:

31 30 29 28 27 26	25	24	23 22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
111011	1	0	Src	1	Mo	dm	,	Sre	2	Mo	dn	1	000)	1		M	odı	1	A	ARı	n	,	AR	n

操作: $GPR(src1) \rightarrow modm(ARm)$ | $GPR(src2) \rightarrow modn(ARn)$

操作数说明:

src1: 寄存器 (通用寄存器 0~7) Src2: 寄存器 (通用寄存器 0~7) ARm: 间接寻址 (辅助寄存器 0~7) ARn: 间接寻址 (辅助寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle 举例:

> SW_SW *AR0--(IR0), *+AR7(IR1), R5, R3 操作: GPR(R5) → mem(*AR0--(IR0)),

> > $GPR(R3) \rightarrow mem(*+AR7(IR1))$

SYSCALL

句型: SYSCALL

指令编码:

31	26	25 6	5	0
	000000	0000_0000_0000_0000_0000		001100

操作: SystmeCallException

操作数说明:

描述: 系统异常。 执行周期: 1 cycle

TLBR

句型: TLBR

指令编码:

31 2	26	25	24	6	5	0
010000		1	000_0000_0000_0000_0000_0000		00_0001	

操作: TLB[Index]₁₂₇ → PageMask;

TLB[Index] $_{95...64} \rightarrow \text{EntryHi}$;

TLB[Index] $_{63}$.. $_{32} \rightarrow$ EntryLo1;

TLB[Index] $_{31 \dots 0} \rightarrow \text{EntryLo0}$

操作数说明:

EntryLo0: 表项 Lo0 寄存器 EntryLo1: 表项 Lo1 寄存器 PageMask: Mask 寄存器

Index:索引寄存器

描述: TLB 变址寄存器所指内容装入 EntryHi, EntryLo0, EntryLo1 和 MASK 寄存器。

执行周期: 1 cycle

TLBWI

句型: TLBWI

指令编码:

31	26	25	24 6	5	0
010000		1	000_0000_0000_0000_0000_0000	00_0010	

操作: PageMask || (EntryHi and not PageMask) || EntryLo1 || EntryLo0) → TLB[Index] 操作数说明:

EntryLo0:表项 Lo0 寄存器 EntryLo1: 表项 Lo1 寄存器 PageMask: Mask 寄存器

Index:索引寄存器

描述: TLB 变址寄存器所指内容装入 EntryHi, EntryLo0, EntryLo1 和 MASK 寄存器。

执行周期: 1 cycle

XOR

句型:	XOR	rd, rs, rt	或者
	XOR	dst, *+ARm(disp1), *+ARn(disp2)	或者
	XOR	dst, mod(ARm), rt	或者
	XOR	dst, *+ARm(disp), Imm	或者
	XOR	dst, rs, mod(ARm)	或者
	XOR	dst, rs, *+ARm(disp)	或者
	XOR	dst, $mod(ARm)$, $mod(ARn)$	

指令编码:

31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000		rs r		rt	t rd		00000	100110
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000	Disp1	ARm	Disp1	ARn	00	Dst	Disp2	1 100110
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000	00	ARm		rt	01	Dst	Modm	1 100110
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000	01	ARm	j	imm	01	Dst	Disp	1 100110
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000		rs	00	ARm	10	Dst	Modm	1 100110
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000		rs	01	ARm	10	Dst	Disp	1 100110
				•				
31 30 29 28 27 26	25 24	23 22 21	20 19	18 17 16	15 14	13 12 11	10 9 8 7	6 5 4 3 2 1 0
000000	Modn	ı ARm	Modm	ARn	11	Dst	Modn	1 100110

操作:	$GPR(Rs)$ xor $GPR(rt) \rightarrow GPR(rd)$	或者
	$Mem(*+ARm(disp1)) \times mem(*+ARn(disp2)) \rightarrow GPR(dst)$	或者
	$mod(ARm) xor GPR(Rt) \rightarrow GPR(dst)$	或者
	$Mem(*+ARm(disp)) xor sign(Imm) \rightarrow GPR(dst)$	或者
	$GPR(Rs)$ xor $mod(ARm) \rightarrow GPR(dst)$	或者
	$GPR(Rs)$ xor mem(*+ARm(disp)) \rightarrow $GPR(dst)$	或者

 $Modm(ARm) xor modn(ARn) \rightarrow GPR(dst)$

操作数说明:

寄存器 (通用寄存器 0~31) rs: 寄存器 (通用寄存器 0~31) rt: rd: 寄存器 (通用寄存器 0~31) 间接寻址 (辅助寄存器 0~7) ARm: ARn: 间接寻址(辅助寄存器0~7) 寄存器 (通用寄存器 0~7) Dst:

T: 寻址模式选择位。

	Γ	源操作数 1	源操作数 2		
00		*+ARn(disp)寻址	*+ARn(disp)寻址		
01	E=00	间接寻址	寄存器		
01	E=01	*+ARn(disp)寻址	立即数		
10	E=00	寄存器	间接寻址		
10	E=01	寄存器	*+ARn(disp)寻址		
11		间接寻址	间接寻址		

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:					
句型	操作				
XOR R5, R3, R7	$GPR(R3) \text{ xor } GPR(R7) \rightarrow GPR(R5)$				
XOR R5, *+AR1(1h), *+AR2(8h)	$Mem(*+AR1(1h)) xor mem(*+AR2(8h)) \rightarrow GPR(R5)$				
XOR R5, *AR2++(IR1), R3	$Mem(*AR2++(IR1)) \text{ xor } GPR(R3) \rightarrow GPR(R5)$				
XOR R5, *+AR1(1h), 08h	$Mem(*+AR1(1h)) xor sign(08h) \rightarrow GPR(R5)$				
XOR R5, R3, *AR2++(IR1)	$GPR(R3) \text{ xor Mem}(*AR2++(IR1)) \rightarrow GPR(R5)$				
XOR R5, R3, *+AR1(1h)	$GPR(R3) \text{ xor mem}(*+AR1(1h)) \rightarrow GPR(R5)$				
XOR R5, *AR1++(IR0), *AR2++(IR1)	$Mem(*AR1++(IR0)) xor Mem(*AR2++(IR1)) \rightarrow$				
AOR R3, 'ARITT(IR0), 'AR2TT(IR1)	GPR(R5)				

XORI

句型: XORI rt, rs, Imm 或者 XORI dst, @Imm 或者

XORI dst, mod(ARm)

指令编码:

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
001110						rs						rt					Imm														
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
001110				11111					00 dst					Imm																	

31	30	29	28	27	l26	125	124	23	22	l21	20	119	18	117	116	15	14	13	112	111	110	9	8	17	16	5	4	13	12	l 1	0
																						_	_	Ľ	Ľ	Ľ		_	_	_	Ľ
						l																_									
	(001	110)		l	1	111	1		10	1		dst	t		N	Лοс	lm		<i>P</i>	۱Rr	n				D	isp			

操作:

GPR(Rs) xor zero(Imm) → GPR(rt) 或者 GPR(dst) xor mem(Imm) → GPR(dst) 或者

 $GPR(dst) \text{ xor mod}(ARm) \rightarrow GPR(dst)$

操作数说明:

rs: 源寄存器 (通用寄存器 0~30) rt: 目标寄存器 (通用寄存器 0~31) ARm: 间接寻址 (辅助寄存器 0~7) Dst: 目的寄存器 (通用寄存器 0~7)

G: 寻址模式选择位。G=00 为直接寻址,G=01 为间接寻址。

描述:

Mod(5bit)	偏移地址的计算	Mod(5bit)	偏移地址的计算
10000	*+ADn(dign)	00000	*+ARn(IR0)
10000	*+ARn(disp)	01000	*+ARn(IR1)
10001	*-ARn(disp)	00001	*-ARn(IR0)
10001	-Arch(uisp)	01001	*-ARn(IR1)
10010	*++ARn(disp)	00010	*++ARn(IR0)
10010	++AKII(disp)	01010	*++ARn(IR1)
10011	*ARn(disp)	00011	*ARn(IR0)
10011	Aidi(disp)	01011	*ARn(IR1)
10100	*ARn++(disp)	00100	*ARn++(IR0)
10100	AKII++(disp)	01100	*ARn++(IR1)
10101	*ARn(disp)	00101	*ARn(IR0)
10101	AKII(disp)	01101	*ARn(IR1)
10110	*ARn++(disp)%	00110	*ARn++(IR0)%
10110	AKII (disp)/0	01110	*ARn++(IR1)%
10111	*ADn (disn)0/	00111	*ARn(IR0)%
10111	*ARn(disp)%	01111	*ARn(IR1)%
11001	*ARn++(IR0)!	11000	*ARn

执行周期: 1 cycle

	句型	操作
XORI	R5, R3, 0840h	$GPR(R3) \text{ xor zero}(0840h) \rightarrow GPR(R5)$
XORI	R5, @0840h	$GPR(R5)$ xor mem(0840h) \rightarrow $GPR(R5)$
XORI	R5, *AR2++(40h)	$GPR(R5)$ xor mem(AR2) \rightarrow $GPR(R5)$, AR2=AR2+40h

XOR_SW

句型: XOR_SW dst, mod(ARn), mod(ARm), src1, src2 指令编码:

31 30 29 28 27 26	25	24	23 22 2	21	20 1	19	18 1	7 1	16	15 1	4	13	12	11	10	9	8	7	6	5	4	3	2	1	0
110100	1	0	Src1		Mod	lm	Sı	rc2		Mod	lm		Dst		0		M	odı	1	A	ARı	n		AR	.n

操作: $modm(ARm) XOR GPR(src1) \rightarrow GPR(dst)$ $\parallel GPR(src2) \rightarrow modn(ARn)$

操作数说明:

src1:寄存器(通用寄存器 0~7)Src2:寄存器(通用寄存器 0~7)ARm:间接寻址(辅助寄存器 0~7)ARn:间接寻址(辅助寄存器 0~7)Dst:寄存器(通用寄存器 0~7)

描述:

Mod(4bit)	偏移地址的计算	Mod(4bit)	偏移地址的计算
0000	*+ARn(IR0)	1000	*+ARn(IR1)
0001	*-ARn(IR0)	1001	*-ARn(IR1)
0010	*++ARn(IR0)	1010	*++ARn(IR1)
0011	*ARn(IR0)	1011	*ARn(IR1)
0100	*ARn++(IR0)	1100	*ARn++(IR1)
0101	*ARn(IR0)	1101	*ARn(IR1)
0110	*ARn++(IR0)%	1110	*ARn++(IR1)%
0111	*ARn(IR0)%	1111	*ARn(IR1)%

执行周期: 1 cycle

举例:

XOR_SW R2, *+AR7(IR1), *AR0--(IR0), R5, R3 操作: mem(*AR0--(IR0)) xor GPR(R5) \rightarrow GPR(R2),

 $GPR(R3) \rightarrow mem(*+AR7(IR1))$

NOTES

- 2003, May,1 更新一些错别字错误。更改了 MDD 指令 LW_LW 的编码,增加了 MDS 指令 PMTLO, PMTHI, PMFLO, PMFHI, 删去了 PSTOREQ, PLOADQ 指令。相对于 Ver1.01.(by Peng LIU)
- 2004, Jan.18 按照字顺排列指令,同时按照 TSMC 流片的版本进行的修正。(by Peng LIU).MediaDSP3201 不支持 MDS 类型 4(以斜体表示)。
- 2004, Feb,9 按照视频系统芯片的设计实现更新指令集,以便第二次流片 (MediaDSP3202版本).根据李东晓的文档。(见附录1)
- 2004, Feb.12 经过李东晓的反馈,进行了更新。
- 2004,Feb.19 经过赖莉雅的反馈,进行了更新。
- 2004,Feb,19RISC3200 的指令集请参考 MDF、MDS 指令。
- 2007,May 张奇修改了部分错误,同时根据小组讨论结果,进行 MediaDSP ISA 指令的整理,形成了指令体系。Ver1.0
- 2007,May,31 修改了 VLD 类指令和 PI 类指令的编码,避免与 MIPS 指令冲突。